
Computer Programming

 0

Computer
Programming
A Guide for the Perplexed

Tukolor

Computer

Programming
A Guide for the P e r p l e x e d

by

Tukolor

 Copyright © 2025 by Tukolor

All rights reserved.

No portion of this book may be reproduced in any form

without written permission from the publisher or author,

except as permitted by U.K. copyright law.

This publication is designed to provide accurate and

authoritative information in regard to the subject matter

covered. It is sold with the understanding that neither the

author nor the publisher is engaged in rendering legal,

investment, accounting or other professional services. While

the publisher and author have used their best efforts in

preparing this book, they make no representations or

warranties with respect to the accuracy or completeness of the

contents of this book and specifically disclaim any implied

warranties of merchantability or fitness for a particular purpose.

No warranty may be created or extended by sales

representatives or written sales materials. The advice and

strategies contained herein may not be suitable for your

situation. You should consult with a professional when

appropriate. Neither the publisher nor the author shall be liable

for any loss of profit or any other commercial damages,

including but not limited to special, incidental, consequential,

personal, or other damages.

Cover by Tukolor

Contents
1. Introduction ... 6

2. Entwork .. 9

2.1 Systems .. 9

2.2 Frameworks .. 13

3. Computer to Computers ... 16

3.1 Pixels and Dots .. 16

3.2 Computer to Device .. 18

3.3 Device to Browser .. 19

3.4 What is programming, then? .. 22

4. What is a Computer? .. 24

4.1 Math .. 24

4.2 Computing Machines .. 26

4.3 The Personal Computer .. 28

4.4 Architecture ... 29

4.5 Counting .. 30

4.6 Decimal .. 31

4.7 Binary ... 33

4.8 Code ... 35

4.9 Language .. 37

Summary ... 39

5. Towards A Language ... 40

5.1 Algorithms ... 40

5.2 Assembly ... 42

5.3 C .. 43

5.4 C-type Languages .. 45

5.5 .NET and its Ancestors .. 48

5.6 .NET, m’okay? .. 51

Summary ... 53

6. Low-level: Pillars ... 54

6.1 Sequence ... 54

6.2 Iteration ... 58

6.3 Branching ... 61

Summary ... 63

7. Mid-level: from object ... 64

7.1 object.. 64

7.2 Variables and Types .. 65

7.3 Arrays ... 67

7.4 Operators ... 68

7.5 Threads .. 70

7.6 Exceptions ... 72

8. High-level: to Assemblies ... 74

8.1 OOP Objects ... 74

8.2 OOP Methods .. 77

8.3 OOP Properties .. 82

8.4 to Lambdas .. 87

8.5 Generics .. 89

8.6 Interfaces ... 92

8.7 Components ... 96

8.8 Assemblies .. 97

9. Data ... 99

9.1 SQL .. 100

9.2 XML ... 105

9.3 JSON ... 108

9.4 YAML .. 111

9.5 HTMLF .. 111

Summary .. 112

10. Web ... 114

10.1 Protocol + Language + Reader ... 115

10.2 Client Revolutions ... 118

10.3 Server Revolutions .. 121

10.4 Distributed / Cloud ... 128

Computer Programming – A Guide for the Perplexed

 6

1. Introduction
This is a very short guide to programming. What is

programming? it asks and tries to answer.

Who is the guide for? I suppose the answer is myself.

Not myself now, but me when I first broached the

subject of computing, long ago in the early 1990’s.

My own background studiously avoided the

technical, which was an intellectual black hole. For

Christmas 1979, or maybe it was 1980, I got an

Amstrad 464. That is factually a computer, but for

me it was a tape machine that played games. How it

worked was a mystery to me, as was any technology.

Television was more or less magic, for example how

the picture appeared on the screen. The Amstrad

464 was a sort of television that played games.

When I became curious about computers in the early

1990’s — and I cannot remember why this was — I

still had the 464. As I remember, I started to try and

learn about computing as follows. I bought a few

issues of ‘Byte’ magazine, which seemed to be an

authoritative voice; I took out a book about BASIC

programming from the local library; and I bought a

cheap (but very good) book on the same subject. Byte

taught me that computing was full of impenetrable

jargon and incomprehensible acronyms, but

nevertheless with a couple of books about BASIC

Computer Programming – A Guide for the Perplexed

 7

programming and an Amstrad 464 and its BASIC

interpreter, I was at least on my way.

However, I remember the things that made

understanding how to program more difficult, things

not so difficult in themselves but hard to understand

due to certain misconceptions, for example that

‘computing is a sort of math’. My guide is aimed at

the level of understanding underlying the writing of

code and which precedes the writing of code. I

assume the reader knows nothing at all about

computers, at least at the level of programming

them, but would like to know what programming is

and what computers are.

This is absolutely not a guide on how to program.

You learn how to program by writing code and

actually writing programs. Writing code is knowing

to how to write the line of code you are

writing now and getting it to run. Writing code is

always in the now. It is never theory. Planning code,

yes, but not writing it. Write it, run it. That is the

ideal, but often the code won’t run, or you don’t know

something you need to know to make it run. A guide

on how to program needs to give you the whole

picture, and what you don’t know you look up.

But before you can learn to program it is at least

useful to know what a program is and what a

computer is (aside from being a magic box that as

you touch it brings to you bright and brave new

worlds). To understand what a program is is not to

know how to code. Therefore, the code examples in

Computer Programming – A Guide for the Perplexed

 8

this guide are written at first in simplified ‘made up’

languages and even when I discuss real

programming languages I have left out most of the

gory details. All code examples have been made as

simple as possible and are intended to be read in the

text, understood as text, and not run in a code editor.

In a nutshell, this is a programming book for

someone who has never programmed but who is

curious about what programming is.

Computer Programming – A Guide for the Perplexed

 9

2. Entwork
Two ways come immediately to mind as a basic

definition of programming. We can say it is:

• programming a computer; or it is

• writing a program.

This is a useful starting point because, while both of

these definitions appear to be more or

less tautological, in fact neither of them is really

true. Not false, but not really true.

2.1 Systems
Take a very simple program. The UI consists of a

single button that, when pressed, prints a document

called foo. Here is the entire code for the program,

written in an imaginary language called fop (‘foo-

only-printer’) that consists entirely of this one

command.

fop::print!

When the foo document successfully prints, it cannot

be denied that we have programmed the computer

and have written a program. But. How did our tiny

‘one-liner’ actually do all that? How did the

computer we just programmed know how to do what

it just did — to print a document?

Computer Programming – A Guide for the Perplexed

 10

The answer, of course, is that we are standing on the

shoulders of giants. We have written a program that

sits on top of a host of other programs. In other

words, we did write a program, but ours was a little

program, as little as a program can possibly be. The

giants wrote all the big bits, all the good stuff. The

code that actually does stuff.

For our UI we used a designer to plunk a button on

our main screen. We also wrote the fop code

(fop::print!) that runs when the button is clicked.

Our click handler.

That’s what we did.

Here’s (very very roughly) what the giants of the

screen code did. Our screen is a rectangular region

(a ‘window’) within the main display. The main

display is in itself more or less dumb. It paints

pictures. It is filled with regions just like our own

screen — with ‘windows’. Our monitor refreshes

the display maybe sixty times a second and at each

refresh each window is painted at its current pixel

position. As the user, say, moves windows around

the screen, each refresh updates each window to its

new position, so it appears to move. Of course, one

window can cover another, so the giants have to

make sure in their code that hidden regions are

hidden and visible ones stay seen. Within each

window, or rectangular region, there is a complex

layout of controls, our button just for example.

These need to be painted onto the display, each in its

Computer Programming – A Guide for the Perplexed

 11

current state. Buttons, for example, ought to look

different when they are pressed.

Worse yet for the giants, windows have

interrelationships with each other. A program (like

our foo one) is a process and each window in it

belongs to that process. Even this one-liner foo doc

program pops up a window informing the user all is

well after a successful print. Even Foo, then, has a

main window and a secondary window. Other more

complex programs will have many more windows.

The giants must ensure that, when a process (that

is, a program) exits (that is, the program is shut

down) all its windows correctly disappear. Finally,

user input has to be tracked (mouse or keyboard or,

nowadays, fingers). The system needs to know —

and right now — what window what user input is

directed at. Each window must send a message as

‘I’m clicked!’, says our foo print button. Why

then, fop::print! replies our little program.

This is kernel stuff that lies deep within the heart

of the computer operating system. The kernel

though needs much more than a dumb windowing

display. Windows are sparked off by processes and

the giants need to manage these. Processes can

launch lightweight versions of themselves

called threads. Managing processes and their

threads is a complex task.

Windows and processes are nothing

without memory. Processes must be loaded into

memory as soon as they are started, and the system

Computer Programming – A Guide for the Perplexed

 12

must allocate each program (that is, its root process)

a set amount of memory (that is, within the available

RAM). In turn, RAM is merely short-term memory.

What use is a computer that forgets everything? A

running program exists in RAM, but the source code

needs to be hard-stored, usually on a HDD. The

giants have to include that in their shuffle, the

shuffle between window, process, quick-memory and

long-memory.

Finally, let us mention peripherals that exist

outside the computer box, and in particular draw

attention to the printer which, after all, is what our

little foo program is all about. Printers come in a

whole array of shapes and sizes. To deal with each

on an individual basis would require an enormous

amount of unnecessary effort. So, the giants devised

a generic blueprint called a driver. To the system

all drivers have the same shape. It is the properties

that differ from implementation to implementation.

Each printer has a driver written for it and the

system interfaces with the driver, not the printer

itself.

In this foo-scenario, of course, the real action takes

place beyond even the system printer driver. The

driver sends the print instructions and data (that is,

the foo document) and the printer carries out the

instructions on the data. The actual code-to-print

resides in the printer itself. It is this code, the

sleeping giant beyond even the giants of the

Computer Programming – A Guide for the Perplexed

 13

computer system (the operating system), that

makes the foo document print.

Our little one-liner, then, is a program within a

program that makes a call to the peripheral program

that actually does the printing. We therefore cannot

really say to ourself that we have programmed a

computer or that we have written a program, though

in a sense these statements are true. If we do claim

we’ve written the program that prints the doc, we

might as well say we have built a house just because

we rang its doorbell. For that is our foo program. It

rings the bell that summons the giant’s code that

wakes the sleeping peripheral giant.

2.2 Frameworks
In the previous section we met with the system and

the peripheral. Developers, generally, do not do close

encounters of such a kind. In between the operating

system and the developer there nowadays lies

the framework. These days, you would not use

a fop method but a fop framework to take care of

printing stuff for you. If you used the

new ffs framework (said to stand for ‘foo framework

services’), you would write something like this:

#foosing fooprint

// Print out the Foo doc.

FooDoc foodoc = few FooDoc()!

foodoc.prefoomat()!

foodoc.confoogurePrinter("Foo!")!

Computer Programming – A Guide for the Perplexed

 14

ifoo (foodoc.sendToPrinter() == fue) {

 infoom("The document was printed successfoolly.")!

 }

Now the path to the giants runs basically like this:

your-code > framework (ffs) > system > peripheral

Another layer of giants — the framework giants —

has been interpolated! In fact, the days of monolithic

do-it-all frameworks seem to be in retreat and are

being replaced by patchworks of littler entwork (as

the old Anglo-Saxons called the handiwork of

giants). Here we have DI (‘dependency injection’),

plugins, services (including microservices),

containers, libraries, components, API’s

(‘application programming interfaces’) etc. What

used to be a whole body is now a composite of

artificial limbs and iron lungs and glass eyes. The

giants have shrunk! In the end though, these little

patches of entwork do add up to the equivalent of a

framework.

We see then that the framework sits on the

shoulders of the system and the modern developer

sits on the shoulders of the framework.

Programming is therefore not writing a program or

programming a computer, it is interpolating code

into a system, whether cloud or Android or PC.

Programming (in feng shui terms) is not to create

the garden, it is to lay a flower bed, or plant a peony.

For some — the support team — it more of a case of

digging up weeds. The computer does not run your

Computer Programming – A Guide for the Perplexed

 15

program, your program runs on the computer placed

on top of the entwork.

That is what a programmer of a computer does and

what programming a computer is. In the next

chapter, however, we will see that even the notion of

‘programming a computer’ is an increasingly

outmoded one, for nowadays a single program runs

on many computers. In fact, it does not so

much run on your computer, rather it arrives at

your computer over the Internet.

Computer Programming – A Guide for the Perplexed

 16

3. Computer to Computers
In the old days when there were just computers and

programs and no ‘devices’ and apps you would code

something like this,

form.Height = 300

form.Width = 300

and there you were. Your program had a nice square

form (window) 300 by 300 pixels. If this was a

Windows program, you were programming for the

Windows system on a Windows PC. A pixel was a dot

on the video display and a line 300 pixels long was

300 dots long.

3.1 Pixels and Dots
Those were the days, not necessarily better, but

simpler. Today, screen resolutions differ widely as

do the devices they run on. The code above (bearing

in mind ‘300’ equates to ‘300 dots’) is in itself quite

inadequate. The thing is, 300×300 is clearly

intended to mark out a region of the screen and,

when a pixel was a pixel, 300 dots did the job. But

nowadays there are dots and there are dots. More

and more dots are being crammed into the modern

screen. This is Hi-Res (or some such term as ‘retina’

in Applespeak). You want to say, ‘this screen should

take up this amount of space’, but you can no longer

specify the number of dots.

Computer Programming – A Guide for the Perplexed

 17

On Android, for example, the problem is solved via

‘virtual’ pixels. These allow you to indeed specify a

300×300 screen, but behind the scenes, the giants

are calculating how many dots there will be in that

300 amount.

I came across this pixel-issue recently when I used

WinForms to write a quick utility program. (WinForms is a

now-old Microsoft technology for building UI screens.) I

hadn’t used WinForms in a long long time, as all my home

projects use WPF1. WinForms does things the old way,

where screens and their text boxes and checkboxes and

buttons have a fixed size specified in pixels. WPF is more

modern and flexible and generally less pixel-centric.

WinForms is designed for programming on a PC running the

Windows system and how refreshing it was in terms of

knocking out a quick app. Here you have — you really do —

a WYSIWYG design system. You create a form (screen,

window) and it looks just how you designed it when you

run your program! You see what you design! Except I didn’t,

for all of a sudden, the screen would shrink when I clicked

on it.

Times and screens have changed since I last used

WinForms. The assumption of a generic PC running on

Windows no longer holds. It’s the pixels, of course. Some

screens are more blessed with pixels than others. The

WinForms team have implemented a fix for it; rather hacky

and inelegant I felt. The fix was also what was making my

1 ‘Windows Presentation Foundation’, which is supposed to have been
the new WinForms replacement for over a decade now, so don’t make
a note in your diary to pencil in when it will replace it

Computer Programming – A Guide for the Perplexed

 18

screen shrink. It was ‘compensating’ for — well, what I am

not exactly sure in my case, as I don’t have either a new or

a Hi-Res monitor. As is so often the case in modern

computing, there was a one-line fix with a configuration

setting (to fix the WinForms fix), but in searching for the fix

for the fix it struck me how even old tech like WinForms

must fit in with the new tech world.

The point is that in this NTW there are computers

and computers. The different resolutions of modern

devices is only the beginning. The tablet and the

phone are essentially computers that are rarely

called computers. Each of these has a tiltable

interface that can be switched between portrait and

landscape. A phone is also moreover very small. You

nowadays have to code your program to make nice

with all these sizes and tiltings.

3.2 Computer to Device
At least though you do still write apps for a PC or a

tablet or a phone (even if you write a single program

with a version for each, each version is an

independent app). What about the Internet, though?

A website is loaded into a browser and the popular

browsers have a version for pretty much any popular

device. Here we have ventured far beyond mere

pixels. A website ought to look good on both a large

Hi-Res screen for a PC and a phone on a phone in

portrait. Even watches can be little computers these

days. Does your site look good on a watch, be it Apple

or Google? And what if you wrote the following code?

Computer Programming – A Guide for the Perplexed

 19

button.Text = "OK"

Kerrang, don’t do that! A perhaps overlooked

counterpart to globalisation is localisation. Even

little programs are often localised these days. So,

your button text should be able to be configured into

the local language of the user.

// set text to 'OK' in the local language of the user

// in German fex, OK is simply

// 'Wiederholungsanpassungswertantwortverschliessung'

button text = localised.OK

Just these three things — screen resolution, device

type, localisation — illustrate how far we have come

from programming for a computer.

3.3 Device to Browser
There is more, though. The earliest web pages were

written in HTML, a ‘markup’ language that

organises and formats text. With HTML all the basic

formatting functionality is there, making it possible

to create a simple ‘word-processed’ document. The

early www was thus a matter of downloading

documents. But the limitations of this were soon

realised and so the giants invented the ‘gateway’.

This was a gamechanger and the foundation of the

modern www. For this gateway existed on the server

— the central exchange that sends web pages to your

browser. The gateway was a place pages could be

sent to for processing before being returned.

Computer Programming – A Guide for the Perplexed

 20

Take a product page, for example. With HTML you

could design a product page, but you would need a

separate page for each product. With the gateway,

you could now design a product page template and

pass this to the gateway. The product details were

retrieved from a database and the template filled in

with the data. The gateway then sent the HTML

page back to the server which forwarded it on to you.

The significance of this new toy was huge, for it can

safely be said ‘no gateway, no Amazon’.

Meanwhile, in browserland, the giants invented the

idea of scripting in the form of JavaScript. It was

JavaScript that could read the DOM and alter it. A

simple example of this can be seen in the following

code:

// HTML

<p>This is a paragraph</p>

// DOM + JavaScript

p.innerHTML = "I have just modified the paragraph text!";

All of a sudden, annoying animations appeared in

web pages. Web pages were now dynamic. They

could be programmed on the client (that is, the

browser).

Of course, the giants didn’t leave things like that.

Web browsers have become more or less like a

‘Windows on top of Windows’, unfeasibly complex

systems with a host of programming possibilities.

Computer Programming – A Guide for the Perplexed

 21

Today, then, the web is more or less a case of ‘client,

meet server and server, meet client’. A web page is

still in the end an HTML document, but this end

result is almost always produced by a myriad of

technologies both on the client and at the server end.

The document is, of course, sent to the device that

requested it, any of the many types of devices in use

today. It may be viewed on a gigantic monitor, or

maybe a tiny watch-computer.

That, in a nutshell, is a million miles away from the

old days of a generic PC running on a Windows

system. The old WinForms days. The path of your

web-programming activity might now look

something like this:

[Yaml, XML, SASS, React.js, TypeScript, Node.js,

SQL (or NOSQL), Apache/Kestrel, Razor,

REST API (or GraphQL), JSON]

 > server > client >

 [JavaScript, CSS, WebAssembly]

 > HTML > browser > system (> peripheral)

Even the basic apparently tautological definitions

we began with — that programming is

‘programming a computer’ or ‘writing a program’ —

are now mere dust. The notion of both ‘computer’

and ‘program’ have vanished. This does not mean to

say that a web site is not a specific thing all in all, or

that it does not in the end run on a computer. But

just because a particular car’s destination is

Penzance and all cars have a destination, that does

not mean all cars have a destination in Penzance.

Computer Programming – A Guide for the Perplexed

 22

That is to say, you can’t build your website on your

computer and say, ‘That looks perfect, all done’, for

the destination of your live website is not limited to

your computer (your ‘Penzance’, if you like). These

days you are, if you like, ‘programming other

people’s computers’.

3.4 What is programming, then?
So, what then is programming nowadays? Before

anything else can be done, it

is planning and designing and thinking. Plan in

place, then it is writing code, perhaps the core

activity or at least the sine qua non of it all. Code

written, then it is assembling codes into a running

unit. Unit created, then it is testing the runnable.

Tests done, then it is fixing code. This is a feedback

loop — writing, assembling, running, fixing — until

the glorious Day Of Beta. Beta built, then it

is reviewing the app by all the interested parties.

Fail? Back to the feedback loop. Pass? the hallelujah

Day Of Release. Release done, then it is maintaining

the app, more or less an as-and-when process (as and

when an issue arises).

So,

• planning

• coding

• assembling

• running (testing)

• fixing

Computer Programming – A Guide for the Perplexed

 23

• reviewing

• releasing

• maintaining

Only the second stage is focused on writing code.

Fixing and maintaining are based on code too, but

not necessarily writing it. We could therefore define

‘programming’ as all this or offer up a narrow

definition of ‘coding’. Which is a how long is a piece

of string question. Perhaps it is best to say that

programming is both coding and a whole lot more.

Whichever and whatever, it is on that hallelujah

Day Of Release — as your little app is at last sent

out to become a part of Ymir, the World Giant, the

giant of the giants who created the code your app

runs in and on — that you become a programmer.

After all, you have a program so ergo even M.

Descartes in his deepest doubt would agree that you

have programmed.

P r o g r a m m o e r g o

p r o g r a m m a t o r / t r i x

s u m

Computer Programming – A Guide for the Perplexed

 24

4. What is a Computer?
As all programs are run via a computer, it is

essential to have a basic idea of how computers run

in order to program one. Programs that work closely

with hardware, such as drivers (programs that

control hardware such as printers of graphics cards)

or to a lesser extent audio and video processing

software, require a detailed knowledge of how this

or that hardware runs.

For most programs, however, a generalist’s view is

sufficient. This chapter examines in suitably

generalist terms what a computer is, how it is

architected and how code is related to the

architecture at the machine level.

4.1 Math
Is programming a form of math? Take the following

algebraic equation

x + y = z

and compare it to this line of code

z = x + y

As these look more or less identical, they support the

view that computing (‘hey, the clue is in the name’)

is math. This view is however a misconception and

the algebra and code are fundamentally different.

Computer Programming – A Guide for the Perplexed

 25

The algebra represents numbers but the code is an

instruction to the computer.

When a mathematician says ‘x + y = z’, they mean

that the abstract values ‘x’ and ‘y’, when added, are

equal to the abstract value ‘z’.

However, the code z = x + y is not an algebraic

equation. ‘x’, ‘y’ and ‘z’ here are pointers to data

stored in the computer’s memory. ‘x’, for example,

might have a value of ‘Hello,’ and ‘y’ of ‘ world!’. So,

the value assigned to ‘z’ would be ‘Hello, world!’.

Hello, + world! = z

This is not an algebraic equation!

Even integral numbers would not make it an

algebraic equation, for ‘z’ = ‘1’ + ‘2’ simply means ‘put

the sum of 1 and 2 into the memory pointed to by z’.

An algebraic ‘x’ is an abstraction of a number; a code

‘x’ is a reference to a value in the computer’s

memory.

However, to pick apart what a computer’s memory

actually is, we need do understand what a computer

is. We will begin with a brief overview of the history

of computing machines.

It is interesting that the once-universal term ‘computer’

given to computing machines is in danger of vanishing.

Tablets and phones are clearly computers but never, or

hardly ever, called by that name. Nowadays computers are

an essential part of cars and televisions, but cars and

Computer Programming – A Guide for the Perplexed

 26

televisions are not computers. As more and more aspects

of life and technology ‘go digital’ it is probably the case that

the computer itself is becoming a historical device, like the

video player or analog TV. The computer, perhaps we can

begin to see, was only a computer in its heyday, when it

was the only computing machine around (pace the pocket

calculator).

4.2 Computing Machines
What is a computer? Before computers, the answer

would invariably be ‘someone who computes’. There

were no machines that could compute (apart from

outlier contraptions such as the genial Babbage

‘engines’). There were devices such as the abacus

that aided computation, but an abacus is not in itself

a computer.

Perhaps the nearest commonplace thing to a

machine-computer was the clock, which effectively

computed the time. The most sophisticated clocks

(and watches) were marvels of mechanical

engineering.

It is in the late 1940’s that electronic machines able

to compute were first built. The groundwork for

these machines was laid over a long reach of history

via the work of many mathematicians, logicians,

linguists and engineers, but the reality of ‘what a

computer is’ begins only with the building of a fully-

functional one. Functional electronic computers first

appeared in the mid-late 1940’s.

Computer Programming – A Guide for the Perplexed

 27

The new computers were at first gigantic devices

that performed very specific and limited tasks. They

were, however limited, proper commercial products

bought by big businesses. The early computers did

what was asked of them well enough.

The development of the computer in those days was

characterised by evolution coupled to many dead-

ends. Each new computer required a new design and

solved a new problem. Some of these designs and

solutions stuck, many did not. Gradually, however,

certain basic principles emerged. The computer

came to be a processor of code stamped onto a

punched card. At this groundbreaking stage, there

was now code and there was machine and the

resulting computations could be stored externally

onto tape.

In other words, there was the computer and there

was computing and the computer had now reached

the point of being a generalist computing machine.

code > [computer] > data

Many well-known components of the modern

computer, however, emerged gradually, including

the most basic functional unit of any computer:

the byte. Things in the ‘real world’ are collections of

electrons and quarks. A computer is a collection of

bits. Just as quarks are collected into protons, bits

are collected into bytes. How many bits in a byte? It

took a while, but eventually a canonical figure of

eight was generally adopted.

Computer Programming – A Guide for the Perplexed

 28

4.3 The Personal Computer
It was the PC that gave us the ‘classical’ shape and

form of the computer, which takes us up to the early-

mid 1980’s.

A generalist can understand a classical PC as

working somewhat as follows. The PC’s activity

began with the BIOS, a chip that ran when the

machine started. The BIOS checked the hardware

and then fired up the operating system (popularly

MS-DOS in the early days). A classical early PC had

at its core a hard disk, memory (RAM), a graphics

card and a processor. It was attached to more or less

essential ‘peripherals’ such as a monitor, keyboard

and of course the floppy disk drive (in all its creaking

glory).

The classical PC stored files on its HDD. Files

contained data or code (‘programs’). Programs were

bought off the shelf — word processors and

spreadsheets and games and the like.

A classical PC, then, was a collection of codes stored

on a HDD ready to be converted into running

programs by being executed as a process by the

operating system (for example, MS-DOS).

FILE > OPERATING SYSTEM > PROCESS

WRITER.EXE > MS-DOS > [PROCID_14E77]

Computer Programming – A Guide for the Perplexed

 29

4.4 Architecture
The fundamental structure of a computer, from the

first machines to the classical PC, is called

its architecture. A programmer ought to possess a

generalist’s understanding of computer

architecture.

As we have seen, the architecture of computers

evolved between the 1940’s and the 1980’s. By the

latter period, the fundamental architecture of the

modern computer was a done deal. Even today’s

tablets and phones are simply reimagining’s of the

first classical PC’s (so we have monitor >

touchscreen, on-screen keyboard, mouse >

touch, HDD > SSD, graphics card > graphics chip).

If the atomic core of a computer is the bit, the active

core is the processor and the world of the processor

is the world of the byte (eight bits), a world which is

illustrated below:

10110101

11100111

00110001

10000011

Fascinating, eh? Well, fascinating or not, that is

bytes and that is computing. But why bytes? To

answer that is not to answer why computers exist at

all, but why they exist in the form they do.

Computer Programming – A Guide for the Perplexed

 30

4.5 Counting
Mathematics is in the end a sophisticated form of

counting. Counting, in turn, is a counting of things.

Things is what pre-scientific people counted. They

counted 5 or 67 or 123 sheep. No one was interested

in no sheep.

The default European method of counting is based

on the ten fingers of the human body. It therefore

has ten names for the numbers. All bigger numbers

are based on these ten names, though this is often

hidden by the changes in the sound of language over

time.

While ‘hundred’ for example is unlike any other English

number’s name, it was probably once pronounced

something like ‘dkmtom’ and so clearly based on ‘dekmt’

(as ‘ten’ was pronounced in them days).

With the adoption of writing, numbers as well as

words were set down on the page (or tree bark or

stone). An example to consider here is the ingenious

Roman system, which worked within three numeric

groupings: 10, 100 and 1,000. Each grouping had a

beginning, a midpoint and an endpoint, written with

a single symbol. The numbers in between were

written using an additive or subtractive principle.

So, V is the midpoint between 1 and 10, and 4 is ‘5 –

1’ (IV) and 6 is ‘5 + 1’ (VI). Similarly, 9 is ‘10 - 1’ (IX).

The additive principle is seen in the sequences I, II,

III and VI, VII and VIII.

Computer Programming – A Guide for the Perplexed

 31

The three groupings are shown below:

I .. V .. X 1-10

X .. L .. C 10-100

C .. D .. M 100-1,000

With a mere six symbols, all the numbers from 1 to

1,000 can be easily written down. So just as we have

VII (7), there is LXX (70) and DCC (700), or IV (4)

and XL (40) and CD (400). It is very noticeable how

this writing system is tied to the decimal system

preserved in the names of Roman numbers.

The significant things to notice here is how this

Roman writing counts only things and how much

this makes sense in pragmatic terms. We might even

ask, Why would anyone want to count anything but

things?

4.6 Decimal
The notion of a zero symbol is a profoundly

unobvious one. It is only because it is so familiar to

us that we find it difficult to conceive of a counting

system without it. However, if we compare it to the

Roman system, things do not look good at a first

glance, for set against the mere six Roman symbols

(IVXLCDM) that can be used for every number up to

1,000, the decimal system requires nine counting

symbols (123456789) plus the zero symbol (0) to get

us to 10. Oh dear.

Things begin to get better though. When we have

used up our counting symbols as we reach the

Computer Programming – A Guide for the Perplexed

 32

number ‘ten’, we can now bring our zero symbol into

play. We shift our first counting symbol to the left of

the zero symbol, which gives us ‘10’. The ‘1’, we now

say, means ‘one lot of ten’, to which we add the zero.

10 + 0 of course remains 10. In that lies the zero’s

profound little trick.

We can now use the same principle for all the rest of

the counting symbols. ‘15’ is simply ‘one lot of ten

plus 5’. Note here that there is no longer any

conceptual shift between additive (VI) and

subtractive (IV) symbols. We can also scale up our

counting symbols on the left and say, for example,

that ‘20’ means ‘two lots of ten plus zero’. Counting

from 10 to 100 is the same as counting from 1 to 10

except for the extra zero on the end.

When we max out our symbols at ‘99’, we simply re-

use our basic principle and shift the ‘1’ to the left

again so that we have two zeros to the right. The ‘1’

now means ‘one hundred’ which of course remains

as-is when we add our two zeros to it. From this

point, we can go on shifting the ‘1’ indefinitely: 1000,

10000, 100000000000000, etc.

With our zero-based system in place, we can write

numbers that would be absurdly complex to express

using the Roman system and all because we

introduced a symbol that is an anathema to counting

— zero!

Computer Programming – A Guide for the Perplexed

 33

4.7 Binary
When the first computers were being designed,

counting was a decimal thing. So how would you

store numbers on the computing machine you are

trying to build? Clearly, that is fundamentally

asking, How do I store digits on the machine? That

is to say, decimal digits.

Early computers used valves and an obvious way to

indicate a numeric value was by using voltages. For

a decimal digit, you would measure any of ten

voltages and each voltage would represent a digit. If

you had two valves, you could fetch back a two-digit

number. Which is clumsy, unworkable.

This is where the genius of the zero-based writing

system comes in, for it is eminently capable of

further abstraction in the way the Roman system is

not. The underlying principle of the zero-system is

that it uses x counting symbols plus another for zero

and it shifts the first symbol to the left when the

symbols have been used up.

If we use seven counting symbols, ‘10’ means ‘one lot

of eight plus zero’. If there are more than nine

counting symbols, we can simply re-use the letters of

the alphabet for numbers greater than 9. With

fifteen counting symbols, we end up with:

123456789ABCDEF. Here, ‘F’ means fifteen and ‘10’

means ‘one lot of sixteen plus zero’. The minimum

number of counting symbols you can have is one,

Computer Programming – A Guide for the Perplexed

 34

where ‘10’ means ‘one lot of two plus zero’ and so

here, meet binary.

Binary is terrible for humans, but for designing

computers it is booyakasha because all we need now

is two voltages to make a digit, one for the solitary

counting symbol and one for the zero symbol. Let’s

say zero volts equals ‘0’ and 1 volt equals ‘1’. So ‘16’

is 10000000 in binary and that would be eight

valves, the leftmost being fired up with 1 volt, the

rest set to zero volts.

The binary counting system is a perfect fit for the

fundamental atom of the computer, the bit. It is

binary that makes it possible to build a working

computer. Binary and decimal are arithmetically

identical in the zero-based writing system. Better

still, so are octal (seven counting digits) and

hexadecimal (fifteen counting digits). What is a

standard byte? Eight bits. Octal. Two bytes, sixteen

bits: hexadecimal.

Binary, octal, hexadecimal: every programmer

needs to have a basic understanding of these.

Note that a counting system above hexadecimal would not

be practical. The next step up from hexadecimal (base 32)

would have thirty-one counting numbers:

123456789ABCDEFGHIJKLMNOPQRSTUV.

Would you be able to work out what the number BOAW2T

is in decimal? That is certainly not BOOJAKASHA!

Computer Programming – A Guide for the Perplexed

 35

4.8 Code
What is 1 + 1? How could you make a computer be

able to answer this question? The answer is, if you

think on the question, not at all obvious. A key to

understanding the answer is to realise that there are

four actors in the sum: the two addends, the sum,

and the ‘+’ symbol. Understand this and you start to

see how a computer ‘thinks’.

Below is a very simplified computer-like way of

saying one plus one:

01. LOAD 1

02. ADD 1

03. STORE

The key to the answer is that there needs to be

somewhere for data to both come from and go to.

Even for something as simple as 1 + 1, the 1’s have

to exist somewhere. In this very simple sequence of

instructions, the first loads a ‘1’ value (the data).

Into what and from where we do not care for the

moment. The point is that we have made it the

computer’s focus of attention. This done, we can run

our add command. This will add 1 to the data we

have just loaded. The data now has a value of ‘2’. The

last thing to do is store our data. Again, where we do

not care for now.

We can use this super-simple system to observe how

our initial ‘algebra’ sum (z = x + y) might work and

Computer Programming – A Guide for the Perplexed

 36

so see how un-algebra-like it really is. Here is the

sum:

01. SET x 1

02. SET y 1

03. LOAD x

04. ADD y

05. STORE z

Note that we could just as well have written (as per

our early example):

01. SET x "Hello,"

02. SET y " world!"

The core of the processor is not, then, monolithic, for

we see commands (SET, LOAD, ADD, and STORE)

along with data. These are handled by the processor

using registers. Registers run commands and store

data.

When we say ‘SET x 1’, that is where ‘x’ will go — to

a data register — and the register will now be

storing a value of ‘1’.

Our first and simplest example (LOAD 1, ADD 1,

STORE) has three registers (A, B, C), one that

executes commands, one that stores the data that

commands act on and a third that stores data

permanently (until it is overwritten). So, this is what

our command sequence is saying:

Computer Programming – A Guide for the Perplexed

 37

load the value 1 onto register B

add the value of 1 to the contents of register B

store the contents of register B onto register C

4.9 Language
Computers do not in any way shape or form directly

understand English. In computerese, our simple

sequence of commands might look something like

this:

00000001 00000001

00000002 00000001

00000003

This is machine code. It is this and only this that

a computer understands. In the above example, we

observe commands and data as the machine sees

them. Look at the first line. The first and second

parts seem identical, but course they are not. Each

command has a numeric look-up value. Here,

‘00000001’ stands for the ‘LOAD’ command. The

second part of the statement is data and it has a

value of 1. Note that, when the computer receives

the LOAD command, it knows what to do with the

data value: it will set registry B to ‘1’.

As humans do not do reading machine code at all

well, a programmer would work with the englished

equivalent of the sequence, which we have met with

earlier:

01. LOAD 1

02. ADD 1

Computer Programming – A Guide for the Perplexed

 38

03. STORE

This represents what is called assembly language.

Assembly languages map very closely to machine

code. Without the binary, assembly language is

easier to read, but not easy to read. Because it must

follow the machine so closely, it is very precise and

very verbose.

Enter the programming language. C, C++, C#,

Java, Kotlin, Haskell, Prolog, LISP, Lua, Ruby,

Python, JavaScript, COBOL, BASIC, Fortran,

Pascal, Ada, Go, Rust, Brainfuck — you could

almost utter a syllable and that there is or was the

name of a programming language.

Programming languages — even C — are human-

readable. They work at a much higher level than

machine code or assembly language. It is important

to understand, though, that they are the same thing.

That is to say, a program written in any

programming language cannot be understood by the

computer. Your program code must be converted into

machine code (perhaps via assembled code). That

done, the high-level language and the machine code

are one and the same.

In many languages, this conversion process is

called compiling. Compilation is performed by — a

compiler. Other languages are interpreted. A

compiler takes your entire program and turns it into

machine code; an interpreter does the same thing

line by line as the program runs. C is an example of

Computer Programming – A Guide for the Perplexed

 39

a compiled language and BASIC of an interpreted

one.

It is programming languages that a programmer

learns, just as a French interpreter must learn

French. A programming language is in a sense

interpreting the computer. To use a programming

language, then, does not require a

detailed knowledge of the underlying machine, but a

general awareness of it is I would say more or less

essential. It is with this awareness that a

programmer can distinguish between algebra and

code: between x + y = z and z = x + y.

Summary
Computing is not algebra. It is not math. It

can do algebra and all sorts of math. But that is not

what it is. At a fundamental level, it is commands

and data. In the simple sum of 1 + 1, the ‘+’ is a

command and the ones are data. The computer is

not (not to its knowledge) doing a sum. As far

as it can tell it is performing a command on data.

The data, moreover, must always

be stored somewhere. As the machine processes any

sequence of command, data must be both fetched

and sent to and from registers.

That is a computer program, a relentless sequence

of fetching and sending and commanding, this

sequence having been read from that alien thing —

alien to the computer — we call ‘code’.

Computer Programming – A Guide for the Perplexed

 40

5. Towards A Language
In the next chapter, we will at last breach the world

of programming and look at a real programming

language, C#. This is one of the most highly-

regarded programming languages around today.

However, before we get to C# itself, the aim of the

current chapter is to place it in a wider context as to

1) what a programming language is and 2) in

particular what a ‘C-like’ programming language is.

5.1 Algorithms
I finish this section on algorithms with a second

metaphor, but let me begin with a first:

an algorithm is a script and code that uses an

algorithm is an actor. Code reads algorithms like

scripts, for an algorithm is a canonical way of solving

a problem. If you use an algorithm, you are wise to

follow it to the letter.

Take as an example problem a computer screen. It is

filled up with lines and each line needs to

be drawn onto the screen and drawn fast. To solve

the problem, enter the algorithm.

The problem here being? Lines can be described

algebraically with a linear equation and that

equation can be mapped to cartesian coordinates.

These equations though are decimal things, not

integers, and decimals use up more time and space

Computer Programming – A Guide for the Perplexed

 41

than integers when they are being processed. Linear

equations are not ideal for computer graphics.

Enter Jack Bresenham in the year 1962, Jack being

one of those ‘little giants’ who figured out one of the

key pieces that became a secure part of Ymir the

world giant. He invented the ‘Line Algorithm’ named

after him, a method of drawing a line using only

integers. His key insight was to see that pixels are

effectively the cartesian coordinates of the computer

display. The problem of line drawing is therefore

getting to pixel Y from pixel X. The algorithm, in a

nutshell, goes from pixel to pixel, nudging the line in

the right direction as it goes. If we advance for

example from coordinate { 300: 300 } to { 301: 300 },

we need only a simple integer addition to move

forward.

The algorithm is an important one. So many lines

are drawn onto the computer screen every second

that shaving off even a tiny amount of processing

time adds up (or in this case subtracts down) and

this illustrates a basic principle in programming: the

more times an action is repeated the more need there

is for speed, and after a certain threshold the need

becomes a requirement.

Algorithms can be considered as the cartilage of

programming, flexing its joints and helping it run.

Fundamental algorithms form part of most

programs because they are integrated into the

frameworks used in every program. Behind the

scenes, a simple line of code such as

Computer Programming – A Guide for the Perplexed

 42

DrawLine(300, 300, 400, 400)

will be using at least a variant of Jack Bresenham’s

algorithm.

5.2 Assembly
While algorithms can provide a global optimisation,

assembly language can optimise individual tasks. It

offers a local optimisation.

Although code written in high-level programming

languages ends up as machine code via a compiler,

compilers are generalists. Of course, they aim to

create good clean assembly code but it is obviously

quite a task to make that code the most optimised

possible in every case. Enter the specialist assembly

language programmer. The ALP has a huge

advantage over the compiler because they can focus

on the specific problem at hand. In the past a good

ALP was a better bet than any compiler. For music

or audio processing, say, an ALP was a must in order

to optimise the code as much as possible.

However, as we know by now the giants of Ymir are

always busy and among them are the giants of the

compiler workshop. As a result, today’s compilers

are masterpieces of entwork. Only a supreme

assembly language programmer could hope to

improve on the assembly code produced by a modern

compiler. There are still edge cases where a human

can still outshine the giants, but generally speaking

only a fool would chance their hand these days at

assembly code in the hope that their code would

Computer Programming – A Guide for the Perplexed

 43

improve on the compiler’s code. So a programmer

ought to know that there is assembly language and

what assembly language is but has no need to learn

how to code in it.

In the far-off days of old though, low-level was an

achievable aim. So, C.

5.3 C
C, it should not be surprising, is based on a language

called ‘B’ which in turn was based on a long-

forgotten ‘A’ language. C was developed in 1972 by

one of the giants of computing, Dennis Ritchie2.

Anyway, C is undoubtedly one of the great

programming languages.

A basic C program looks like this:

int main() {

 // do stuff

}

As you familiarise yourself with programming, you

will immediately recognise this as a ‘C-like’

language by those {} curly braces. C is a high-level

language with a deliberately concise syntax. Before

C, programming languages tended to aim for a

chatty English-like appearance that made the code,

it was thought, more readable.

2 He even, I believe, got to be on first-name terms with Ymir who
although he only has one name likes to be called Mr. Ymir by the likes
of you and me.

Computer Programming – A Guide for the Perplexed

 44

Here is a simple Pascal example (Pascal being a

language designed by Niklaus Wirth in 1970):

function Add(X, Y: Integer): Integer;

var

 Result: Integer;

begin

 Result:= X + Y;

end;

Here is the much more concise C equivalent:

int add(int x, int y) {

 return x + y;

}

C is of particular interest here as it is a high-level

programming language that goes low-level with a

feature called ‘pointers’, which constitute a first-

class part of the language. Pointers look like this:

int* ptr = &value;

A pointer is how C bridges the gap between a high

and a low-level language. So, in our

example, &value ‘points’ to a memory location on the

computer. *ptr points in turn to &value. Pointers

allow the programmer to do assembly-language type

things in a high-level language and to communicate

with the machine at the lowest level. (Pointers also

have the uncanny ability to make C code look like

Martian.) Anyway, C had all the high-level stuff

other languages had, but it was pointers that made

it C.

Computer Programming – A Guide for the Perplexed

 45

In the long run though, what with imitation being

the sincerest etc, it is a testament to C that it became

not just a language but a type of language. A lot of

people it seems just like those curly braces.

5.4 C-type Languages
C-type languages include C++, Java (and its

successor Kotlin), JavaScript and C#. That is an

impressive collection of descendants.

Here is our add code in JavaScript:

function add(x, y) {

 return x + y;

}

Here is a Kotlin equivalent:

fun add(x: Int, y: Int) {

 return x + y;

}

Spot the difference?

C itself began all of a sudden to be old when a group

of giants invented the object. We will discuss

objects in detail in Chapters 7 and 8, but for now we

can say that an object is a way of grouping code into

the expression of a thing. A common example used

to explain objects is an Animal. In the real-world

things tend to be types of things and so a Mammal

is a type of animal and a Cat is a type of mammal.

So, animal <> mammal <> cat.

Computer Programming – A Guide for the Perplexed

 46

If we code for an object called ‘Animal’, we can then

create another object called ‘Mammal’ that inherits

from the ‘Animal’ object. A ‘Cat’ object can likewise

inherit from the ‘Mammal’ object (and therefore

indirectly from an Animal object).

C does not do objects, so Bjarne Stroustrup invented

a C-like language called C++ that did and does do

objects. Here are our objects in C++:

class Animal{

};

class Mammal: public Animal {

};

class Cat: public Mammal {

};

Class? An object is a thing. A class is what defines an object.

In your code you would create a Cat object you had defined

as a class. As an analogy, we can say that the FA Cup Final is

played between ‘two teams’, a specific final between

‘Liverpool’ and ‘Arsenal’. Here ‘team’ is a class, ‘Liverpool’

an object.

C++ is still today a go-to language because it does all

of the low-level C things while offering the

advantages of objects, but C++ programs tend

towards the verbose, despite the concision of C.

Common tasks need lines and lines of code. It is still

popular for certain tasks, but many would say

‘showing its age’ (like C itself).

Computer Programming – A Guide for the Perplexed

 47

A big issue with C and C++ is memory. These

languages — this is of course due to their facilitation

of low-level coding, also their great strong point —

require careful memory management. All computer

programs, as we have seen, have commands and

data and all data points to a memory location. What

about when the program no longer needs the data?

At that point, data should be dereferenced. In C and

C++, programmers are responsible for deallocating

memory. With this responsibility comes great power

but does the average program need this? If not, why

must the poor programmer needlessly endure a

responsibility which is so obviously a recipe for

disaster in the form of the dreaded bug?

Enter Java (designed by James ‘the giant’ Gosling)

and meet the garbage collector. In a Java

program, all memory references are logged by the

Java ecosystem. The ecosystem regularly checks if

data is being referenced. Every so often,

dereferenced memory is declared as ‘garbage’ in a

great sweep (a ‘garbage collection’) and is cleared

away. The programmer, therefore, does not have to

worry about ‘leaking’ memory. Java does it all for

you.

Another innovation of Java is that it is not compiled

into machine code (or assembly language). Java runs

via the ‘Java Virtual Machine’ that exists in a world

of bytecode. Bytecode is Java-specific and is

essentially a generic form of assembly language. It

is this bytecode that is compiled to machine code.

Computer Programming – A Guide for the Perplexed

 48

What this means is that, because bytecode is

universal, Java can run on any operating system.

The bytecode is compiled into the machine code of

whatever system is running, be it Windows, Mac or

Linux.

Java, then, is a C-like language that is nothing like

C. It is not a hybrid low-high-level language or a

replacement assembly language. It is a modern

language. Or was. Even Java is now ‘showing its

age’.

Kotlin is the new Java, and is a language strongly

influenced by C#. The interesting thing about Kotlin

here is that it is compiled (the term is transpiled)

into Java, indicating the profound changes in

computing technology over the years:

THEN C -> machine code

NOW Kotlin -> Java -> bytecode -> machine code

Those are the C’s, then. Next let us take a look at

.NET, the natural habitus of C# that first entered

the world at the beginning of 2002.

5.5 .NET and its Ancestors
The story of .NET begins, in this narrative at least,

with the release of Visual Basic way back in 1991.

This was a landmark release that revolutionised

software development — WYSIWYG programming,

who’d’a’thunkit? What you got with VB was a

language (VB itself) and a designer. You created a

screen (called a ‘form’) and then wrote code to

Computer Programming – A Guide for the Perplexed

 49

respond to button clicks and checks and mouse

moves and so on. You would also, of course, write

non-user-interface code for all the general

functionality that your program required. The clue

to the intent of VB lies in the language chosen —

BASIC, the more or less toy language often used to

teach children how to program. VB was not a toy and

it was not BASIC, but it was a limited language. It

was a brilliant piece of technology — revolutionary,

as I said — but the limitation was all too obvious.

Two years later in 1993, Microsoft released the first

version of Visual C++. This, the company seemed to

say, was for proper programmers. As we have seen,

C++ is a C-like language equally at home as a low-

or a high-level of coding. VC++ also shipped with the

MFC (‘Microsoft Foundation Classes’), its helper-

library. Still, helper-library or not, VC++ is verbose.

As a low-level language, the argument went, that

was a necessary burden for the programmer and

VC++ did indeed offer a low-level of control

inconceivable with VB.

By 1993, then, Microsoft had the over-simplified VB

and the over-complicated VC++. So,

meet Delphi from Borland, released two years after

VC++ in 1995 together with its VCL (‘Visual

Component Library’). Delphi situated itself in the

perfect middle space between VB and VC++. Rather

than BASIC, Delphi used Pascal. No one would deny

that Pascal is a better general-purpose language

than BASIC. The Delphi dialect was Borland’s own

Computer Programming – A Guide for the Perplexed

 50

Object Pascal. While VB was object-based its

implementation of ‘Object-Oriented

Programming’ (to be discussed later) was limited.

Object Pascal was fully-OOP. Moreover, Delphi had

the beautifully-designed VCL, which aimed to cover

about 80% of development needs, leaving the power

of the Object Pascal (OP) language to cover the rest.

Finally, there was a RAD (‘Rapid Application

Development’) screen designer tied in to a well-

thought-out hierarchy of screen (‘form’) objects. The

major player behind all this was another of the all-

time giants, Anders Hejlsberg. Poached by

Microsoft, he went on to design C#, the language we

will shortly be looking at.

Lastly, a brief mention of COM (‘Component Object

Model’), another Microsoft technology that first

appeared in 1992. This technology tried to solve the

problem of sharing data and functionality between

Windows programs. Using COM, me.dll could as it

were ‘merge’ with you.dll, and me code run inside you

code. COM was clever, COM worked, but it was not

pleasant to work with. Like VB, it was kind of good

and kind of bad in equal measure.

A question worth asking, then, is ‘Why didn’t Delphi

sweep the board?’ Delphi was, at least it seems to

me, superior to both VB and VC++ as a generalist

IDE (‘Integrated Development Environment’) by

some margin and ought to have done more than it

did. Perhaps it didn’t because Borland was a much

smaller company than Microsoft, but I wonder if

Computer Programming – A Guide for the Perplexed

 51

another issue was with Pascal. This is a very clean

language, but it does mean that a Delphi program is

necessarily much more verbose than one written in

a concise C-like language.

When the .NET Framework appeared, any Delphi

developer would recognise the VCL in WinForms. In

the broadest of senses .NET was a sort of

supercharged Delphi. But there at its core was the

clean and concise C#, not the verbose Pascal.

5.6 .NET, m’okay?
The .NET Framework could be described as a mix of

Java, COM, VB and Delphi.

Like Java, .NET Framework languages didn’t touch

machine code. Instead of bytecode, .NET used the

Intermediate Language (IL). However, .NET was

not a ‘universal’ platform. It was Windows-only. The

purpose of IL was to unify all the .NET languages.

Whatever language you used to code in, the result

was always IL. Any .NET language could be used in

any project.

The .NET Framework was a world of assemblies

each of which was all IL. The framework libraries

were assemblies, your program was an

assembly, everything was an assembly. Everything

now being IL, COM was redundant. .NET did the job

of COM, but did it far better.

Now me.dll and you.dll, both rewritten in .NET,

could run inside other assemblies. Both me.dll and

Computer Programming – A Guide for the Perplexed

 52

you.dll were, after all, assemblies and both therefore

IL.

// this code is in me.exe

using yousoft.you; // this is the you.dll assembly

. . .

// me.exe is calling code in you.dll

me = you.foo();

. . .

// this code is in you.exe

using mesoft.me; // this is the me.dll assembly

. . .

// you.exe is calling code in me.dll

you = me.foo();

With the newer .NET Core, IL is much more like

Java’s Virtual Machine. With .NET Core, IL

compiles into Windows, Mac and Linux machine

code. Modern .NET programs (should we call them

‘apps’ nowadays?) can therefore run on Macs and

Linux boxes3.

.NET today is a mature (quarter of a century-old!)

platform that (with .NET Core) is adapting to a

3 This has certainly expanded .NET’s reach, though I suspect the root
cause of this is the ever-decreasing range of Microsoft’s own reach.

Computer Programming – A Guide for the Perplexed

 53

rapidly-changing development environment, what

with the Internet and the tablets and phones and

watches all encroaching in on Microsoft’s safety-

zone, the Windows PC. The monolithic Framework

is gone, replaced by a deliberately modular

architecture. The general principle nowadays is

that, if you need to foo something, you just choose

the tool you think foos best. This might be Gengal or

Broobant or Woolp or any of the other foo

frameworks out there.

The one stable thing though seems to be C#. The

.NET Core pretty much is C# these days, which

sounds to me like a lead-in to the next chapter.

Summary
C-like languages begin with the eponymous ‘C’, a

sort of low-high-level hybrid. Then ‘Hello, objects!’

and objects came to C via the good offices of C++.

Next came Java, a language with a C-like syntax

that removed the low-level stuff. Last not least is C#,

the core language of .NET, a language that builds in

one way or another on each of these earlier C’s.

Computer Programming – A Guide for the Perplexed

 54

6. Low-level: Pillars
There are three fundamental pillars of coding:

sequence, iteration and branching. This section

therefore introduces coding by explaining these

pillars and their significance.

6.1 Sequence
A computer program is in essence a sequence of

instructions. This works at two levels. Firstly, the

programmer writes code in a high-level

programming language. Secondly, the program is

compiled into machine code. It is a sequence of

instructions but the machine code sequence is what

is executed.

A computer program is a sequence of instructions in

machine code.

What are the instructions in the sequence are made

out of? Well, let us first of all look at this sequence:

Print out "foo"

Output "foo"

Send the following to the screen: "foo"

the word is now "foo"

show us the word "foo"

This sequence is written in a human language and

illustrates how human languages are too imprecise

to write computer code in. Look for example at how

Computer Programming – A Guide for the Perplexed

 55

easy it is to say the same thing in so many different

ways. This imprecision unacceptable if we want to

deliver instructions to a computer.

We have already sketched out the early days of

computers, of valves and machines big as castles,

but back in the 1950’s a more refined aspect of

computing was also active courtesy of the theorists.

These thinkers were studying the idea of computer

intelligence and in doing so investigated the

possibility communicating with the computer and

the consequent relationship between computer and

language.

The thinkers soon realised language is a very

complex thing. Sure, you can make a computer

understand a sentence like ‘The cat sat on the mat’.

It is relatively simple to write rules that say a

sentence is not syntactically incorrect or a word is

not in the dictionary (an asterisk here denotes an

ungrammatical sentence):

*cat the on the sat mat [syntax check fails]

*sat mat cat the the on

*the clat sat on the mlat [dictionary lookup fails]

*dhe cat apped ob dhe mat

Semantics was the deal-breaker:

The cat ate on the mat

?*The cat ate the mat

?*The cat wandered through the mat

?*The cat expressed the mat

Computer Programming – A Guide for the Perplexed

 56

The simplest human conversation turns on an

immense and ever-expanding database of context.

Any human would know that mats don’t sit on cats.

That is context. A computer does not know this and

has no sense of context. A poet, however, might use

the phrase, knowing it is absurd. Cats do crawl

under mats and that would be a context to use the

phrase ‘The mat sat on the cat’. This deliberate

misuse of language is even further beyond

computer’s reach.

The cat sat on the mat

But the cat was very fat

So *the mat sat on the cat [SEMERROR 2X43h!]

Said how do you like that?

This was also the era of Noam Chomsky and his

revolutionary work ‘Syntactic Structures’ (1957).

The basic and revolutionary idea was that language

can be seen in mathematical terms. Here a

‘dictionary’ is a set of values that can be transformed

by rules (‘grammar’) into phrases. One of his great

insights was that there are ‘phrase structure’

grammars that, while inadequate to

describe human language, are nevertheless

grammars that describe language.

This is where the computer thinkers come in. We

have seen how human language is too diffuse to be

used to program a computer. But a simpler phrase-

structure language is another thing. The key point

now is that the new way of thinking about language

was mathematical. If you defined a language in a

Computer Programming – A Guide for the Perplexed

 57

mathematical way, the correctness of its syntax

is provable and testable. If you could design

a computer language this way, you could read any

code written in it and prove if it was syntactically

correct. Note that there could be no semantics

problems as per human language. Such a language

would be perfectly unambiguous.

That, in a nutshell, is what the compiler we have

often talked about does. It constructs the rules of the

language, reads the code, checks the syntax.

A programming language defined so is built around

a dictionary of keywords and operators and a

grammar. A dictionary might include items like this:

keywords: if then while do for break

operators: +-*/%^&()

Even at the simplest level, it can be seen that a

program written in that language would be incorrect

if it used non-keywords such as ‘boo’ or ‘yaka’ or ‘sha’.

The grammar tells the compiler what the rules are

for putting keywords and operatives in the right

order. Say this syntax is correct:

x = 3

The following instructions must therefore be wrong

(unless the language is appallingly designed):

Computer Programming – A Guide for the Perplexed

 58

= 3 x

3 x =

3 = x

The last line is worthy of note, for it provides a neat little

insight into how code works. The intent of the language

here is clearly to say: place the value on the right hand side

(rhs) into the memory referenced by the left hand side (lhs).

So x = 3 means ‘place the value 3’ (rhs) into the memory

referenced by x (lhs). If we reverse the x and 3 we can see

that 3 is a literal and the code makes no sense. There is

nowhere for the value in x to go!

Returning to our first example, we can replace the

imprecise English with proper computer code:

print("foo");

Because the syntax can be proved correct, all

ambiguity is removed:

sat cat mat [GREAT! OK!]

sat mat cat [NO! 2X43h! SEMERROR!]

and no poet could argue with that, not even Homer

himself.

6.2 Iteration
Computer code would be perfectly rotten if there was

just an endless sequence of code. Imagine a million

lines of solid uninterrupted statements. The

sequence is the first pillar of programming. The

second pillar is iteration.

Computer Programming – A Guide for the Perplexed

 59

Look at this code from a world with no iteration:

print("foo");

print("foo");

print("foo");

print("foo");

print("foo");

With iteration:

// iterator plus control code in parentheses

for (i = 1; i <= 5; i = i + 1)

{ // code block start

 print("foo"); // code within block

} // code block end

This is a for loop (iteration). Note the familiar curly

braces. These define a block of code. The block

begins with the opening brace and ends with the

closing one. All the code in between (all of one line

here) belongs to the for loop. Between the for and

the opening brace you can see how the loop is

controlled.

The code is saying ‘loop 5 times’. First it places the

value of ‘1’ into the memory referenced by i. Second

it tests to see if the value in i is less than or equal to

5. If the value in i is 6, the iteration stops and we

pass to the closing brace (which means ‘end’). If the

value in i is less than or equal to 5, the third control

segment in executed, and 1 is added to the value in

i. Having got past the control code, the code within

the braces is executed. Here of course, the word ‘foo’

is printed.

Computer Programming – A Guide for the Perplexed

 60

In this code, the value in i is initially set to 1, so it

will pass into the block and output ‘foo’. At the

second point of iteration, i will be 2, then 3, then 4,

then 5. So ‘foo’ will be output 5 times.

The other common iterator found in programming

languages is called a while loop:

i = 1;

while (i <= 5)

{

 print("foo");

 i++;

}

. . .

i = 1;

do

{

 print("foo");

} while (++i <= 5);

As you can see, there are two variations, each useful

depending on the situation. The general meaning of

the code should be clear. Both loops output ‘foo’ five

times. In the first loop, the control code is at the start

of the iteration, in the second (a ‘do while’ iteration)

it is placed at the end.

This example introduces a neat bit of concision common to

all C-like languages, the ‘plusplus’ notation. Instead of

saying i = i + 1, we can express the same thing concisely

Computer Programming – A Guide for the Perplexed

 61

with either i++ or ++i. Both add 1 to the value of i.

However, i++ means ‘run the code in this line then

increment i’ and ++i means ‘increment i and then run the

code in this line’. Generally, i++ is better, being more

readable. In the do-while loop, though, observe how the

value of i must be incremented before the test in the

control code. Here, ++i is the one to use. Anyway, therein

lies the witty joke behind the name C++. (Was the beta

design called ++C?)

6.3 Branching
The third pillar of programming is branching.

Consider the following code:

// get my winnings!

winnings = casino.GetBalance(me);

// invest them!

myaccount.Invest(winnings);

This code uses objects, which we encountered in the

last chapter. Don’t worry yet about what exactly an

object is, the code here is easy enough to understand

in itself. The casino object has code that sends back

the user’s balance and the account object has code

that invests the specified amount. The code thus

retrieves the user’s casino balance and invests it into

their bank account.

It should be obvious that there is something

profoundly wrong with this code. Since when are

casinos associated with winning? Even if people do

Computer Programming – A Guide for the Perplexed

 62

sometimes win at casinos, this code assumes they do

without fail.

This is where branching comes into play. Without

branching, the problem with code above would be

unsolvable. With branching, the solution is obvious:

casinoBalance = casino.GetBalance(me);

if (casinoBalance > 0)

{ // "then"

 myaccount.Invest(casinoBalance);

} // "endif"

A branch can be thought of as an if-then statement.

A lot of programming languages in fact use these as

keywords, Pascal for example:

if (casinoBalance > 0) then

begin

 // code

end;

This shows how elegantly concise C-like languages are, for

they remove the need for a ‘then’ statement whilst

retaining full readability.

The if statement is the most obvious example of the

incorporation of Boolean logic into computing. In

essence, this logic reduces to statements that are

either true or false. So, from a Boolean point of view

The cat sat on the mat is either true or false. If the

cat is or was sitting of the mat, it is true; otherwise,

it is false.

Computer Programming – A Guide for the Perplexed

 63

Note here how a Boolean statement needs to be very

precise. ‘The cat sat on the mat’ is very imprecise. For

example, it doesn’t specify which cat, nor when. If any cat

ever sat on the mat, the statement could be considered

true, but that is not what the English sentence means: that

implies a specific cat is or was just now sitting on the mat. If

a mat was found in the great palace of Ur, and a cat sat on

it 5,000 years ago, no one would use that phrase to express

this.

Because there are just two values in Boolean logic,

the values ‘1’ and ‘0’ are often used 4in programming

(where the universal convention is the ‘1’ means

‘true’ and ‘0’ means ‘false’).

But with a bool type in a language such as C#, it is

perhaps better to think in abstract terms simply of

true and false.

Summary
These three pillars of programming — sequence,

iteration and branching — sound so simple, but they

are so fundamental that they can express practically

anything. Of course, while learning to program

merely begins here, you now understand how a

program is structured at the most fundamental

level.

4 The single characters ‘Y’ and ‘N’ are also often used.

Computer Programming – A Guide for the Perplexed

 64

7. Mid-level: from object
The three pillars of programming have taken us a

long way, so now it is time to examine general

everyday-level coding concepts that are only slightly

less fundamental.

7.1 object
C# is an OOP (Object-Oriented Programming)

language in which everything is an object. The

following code is illegal:

// start of program illegal.exe

int x = 1; // ILLEGAL!!!

// rest of code omitted

The x variable here is ‘loose’. It does not belong to an

object. To avoid such looseness, you must write this

instead:

// start of program legal.exe

class Legal

{

 int x = 1; // LEGAL!!!

 // C-like Main() omitted

 // rest of code omitted

}

That’s better. The x is now safely tucked away within

a class.

Computer Programming – A Guide for the Perplexed

 65

The base on which C# is built is called object.

Everything in a C# program is at root an object. An

object is created with the new keyword like this:

object o1 = new Object();

object o2 = new object(); // equivalent

object o3 = new(); // newer shortcut syntax

Object is also a type, the root type. Tautologically, in

the code above o2 is an object of type Object. It is

a variable, so it is also a variable of type Object. As

Object is important rather than interesting, let us

quickly move on to the variables and types that

programmers actually use.

7.2 Variables and Types
At the lowest level, C# is variables which come in

various types. You already know that data points to

a memory location in the machine. So, if you read the

C# code

var x = 1;

you should know it means that x references a

memory location that contains a value of ‘1’.

However, in a high-level language that is too

simplistic, as the following code illustrates:

var x = 1;

x = "foo"; // ERROR!!!!

The var keyword in C# is a sometimes-useful way

of declaring a variable. It essentially means ‘any’, so

var x means that x can be of any type at the point of

Computer Programming – A Guide for the Perplexed

 66

declaration. Once declared, however, the type of x is

fixed. If you write var x = 1, then x is an integer. You

cannot later assign a string to it. If we

change var to int, the code looks a lot clearer:

int x = 1;

x = "foo"; // OBVIOUS ERROR!!!!

It is important to understand that int is an object, so

we can if we want declare it like this:

int x = new int();

int y = new Int32(); // equivalent

The declaration int x = 1 is what is known as ‘syntactic

sugar’, referring to when a common programming task is

provided with a shortcut baked into the language itself.

We should also mention the constant. Conceptually,

a constant is a variable that can’t be changed. So,

const x = 0;

var y = 0;

x = 1; // ERROR!

y = 1; // OK!

Constants are becoming increasingly fashionable in

modern code-think, and with good reason. Constants

don’t change, bringing a welcome level of

predictability to very large programs (we might

prefer to call them applications). There is growing

consensus these days that if a value can be a const

it should be.

Computer Programming – A Guide for the Perplexed

 67

7.3 Arrays
You wouldn’t get far with just variables, which can

only store a single bit of data. Hence the very

venerable array. Here is array of integers:

// verbose

int[] i = new int[3];

i[0] = 1;

i[1] = 2;

i[2] = 3;

// quick'n'easy

int[] j = { 1, 2, 3 };

Given what you already know, that code should be

easy to follow. You know that declaring i points to a

location in memory. An array is just a group of i’s

with a specified size (or length in C/C#

terminology). So int[3] simply means a variable

with a ‘length’ of three int’s. An array has

an index that starts at zero, so compare:

int i = 1;

int[] a = int[1]; // length in the square brackets

a[0] = 1; // index in the square brackets

The variable and the array say the same thing. The

variable i is set to 1, and the array index of 0 is set

to 1. So, the variable i points to a value of 1, and the

first and only element of a points to a value of 1.

The code below illustrates the basic usefulness of

arrays:

Computer Programming – A Guide for the Perplexed

 68

// use a variable here

string single = "Honky Tonk Women";

// use an array here

string[] album = { "Gimme Shelter", "Love In Vain",

 "Country Honk", "Live With Me", "Let It Bleed",

 "Midnight Rambler", "You Got The Silver",

 "Monkey Man", "You Can't Always Get What You Want" }

7.4 Operators
Operators are fundamental to programming.

Assigning values, arithmetic and testing for equality

are all things that need to be done, and frequently,

in any program.

Certain operators need no explanation:

x = y + 1; // addition operator

x = y - 1; // subtraction operator

Some are familiar in function but maybe not in

appearance:

x = y / 1; // division operator

x = y * 1; // multiplication operator

The ‘=’ operator that everyone knows and loves is

deceptive though in C-like languages, for it does not

mean ‘equals’. The code below explains the initially-

confusing family of equality operators, including

those relevant to Boolean logic.

Computer Programming – A Guide for the Perplexed

 69

// this does *not* mean 'equals' but something

// like 'assign to' or 'place the value in', so

// here 'assign the value 1 to x'

x = 1;

// the equality sign uses two equals characters '=='

// 'if the value of x is equal to the value of y'

if (x == y) {}

// an exclamation mark means 'not',

// so != means 'not equal to'

// 'if the value of x is not equal to the value of yv

if (x != y) {}

// bool (Boolean) values can be true or false

bool t = true;

// set f to not t: here, as t is true, not t is false

bool f = !t; // 'not' operator

if (!(x == y)) {} // same as x != y

// note: '!' is less readable here but often makes complex

// evaluations more readable

// two ampersands mean 'and'

if ((x == y) && (a != b)) {} // both tests must be true

// two bars mean 'or'

if ((x == y) || (a != b)) {} // either tests can be true

Computer Programming – A Guide for the Perplexed

 70

There are other operators, but that should be

sufficient to illustrate what an operator is and how

it is used.

7.5 Threads
Threads are among the gnarliest and most difficult

aspects of programming. But this is so because of

what they do, not what they are. The idea of threads

(threading) is actually very simple and even coding

for threads (multithreading) has been made easier

and easier.

A computer program executes in a process created

by the operating system. It is this process that

streams to the processor all the commands and data

contained in the machine code.

Some tasks take longer than others in running code.

Say a particular task takes five seconds. With just

the one process, the program would freeze until the

task ended.

This is the purpose of threads. A thread is a sort of

lightweight process — it can stream commands and

data to the processor too — spawned by the main

process, the process. A process can spawn multiple

threads. So, with a thread created, the lengthy task

can be delegated to it. Now the thread takes five

seconds but the main process is free and the user is

happy because the program doesn’t freeze.

Computer Programming – A Guide for the Perplexed

 71

The code below illustrates that a simple piece of

threading code is almost as easy to read as non-

threaded code:

// async signals that Add is threaded

// 'asynchronous programming' is another term

// for 'threading'

/*

 (The <int> indicates 'Task' is a 'generic' type, a

 topic discussed in the next chapter, but it is enough

 to understand that 'Task' here is tied to the integer

 type.)

*/

public async Task<int> Add(int i)

{

 // wait for the ++i task to be completed

 return await Task.FromResult(++i);

}

. . .

// wait for a billionth of a nanosecond

int added = await Add(1);

. . .

// non-threaded code

public int Add(int i)

{

 return ++i;

}

Computer Programming – A Guide for the Perplexed

 72

. . .

int added = Add(1);

Threading can never be simplified however or made

not gnarly. It is easier to create threads nowadays,

but they are still threads. That is, if you had five

threads running, you have six (including the main

process) pieces of code active. If a certain i value is

floating in and around this code, we need to ensure

that its value does not get set by one thread and

reset by another. This is one reason for the current

enthusiasm for constants. No thread can change a

value that cannot be reset. ‘Threading issues’ are the

stuff of a programmer’s nightmares. (A programmer

dreaming of being chased by a monster is usually far

more worried about that threading bug their dream

can’t solve.)

7.6 Exceptions
Look at this code (well, imagine this code):

{

 // imagine a gigantic mass of code

}

The more gigantic in mass code gets, the more likely

it will generate an error at some point. The modern

way of dealing with errors is via exceptions. An

exception can be thought of as an anticipated error.

Exceptions work with a try-catch block.

We can rewrite the above code as follows:

Computer Programming – A Guide for the Perplexed

 73

{

 try

 {

 // imagine a gigantic mass of code

 }

 catch (Exception e)

 {

 // handle error

 }

}

There are many types of exception, so we can handle

exceptions in a very granular way. If our program

was about processing Mallumps, we could create our

own custom exception:

catch (MallumpOverloadedException e)

{

 // handle error

}

catch (MallumpNotFoundException e)

{

 // handle error

}

This example also illustrates how you can finesse

your exception handling with multiple ‘catch’ blocks.

With exceptions, we conclude our (very selective)

look at ‘mid-level’ coding features.

Computer Programming – A Guide for the Perplexed

 74

8. High-level: to Assemblies
This chapter provides an overview of the features of

C# that lead to increasingly greater levels of

abstraction until, at the assembly level, the program

itself is capable of becoming a service for other .NET

programs.

8.1 OOP Objects
We have met with objects — they are hard to avoid

in modern computing. This section describes custom

objects created by the programmer.

The pillars of objects are:

• inheritance,

• encapsulation, and

• polymorphism.

Which is a grand way of obfuscating the fact that

objects actually fairly easy to understand at a basic

level.

In an earlier chapter, we looked at objects in an

abstract way and talked about hierarchies, giving as

an illustration a hierarchy proceeding from Animal

to Mammal to Cat. We said that in this hierarchy

Mammal inherits from Animal, Cat from Mammal.

Computer Programming – A Guide for the Perplexed

 75

In C#, such a hierarchy can be expressed like this:

// note: a class has a code block (empty here)

class Animal {} // curly braces: code block!

class Mammal {}: Animal

class Cat {}: Mammal

This is quite useless to anyone, so let’s add the

ability to give an animal a name:

class Animal

{

 string Name;

}

The variable Name is called a field. It is a member of

Animal. We can now create an Animal object (as

defined in the Animal class) and assign a value to the

name field, like so:

Animal a = new Animal();

a.Name = "Lion"; // class members are denoted by a dot

Here a is an object. This object instantiates

the class Animal. We use the word new to create an

object defined by a class. Here we set the Name field

to ‘Lion’. Members of a class are denoted with a dot:

{ class } dot { member }.

With the line new Animal(), we meet with a

class constructor. This is a special method called

when an object is created:

Computer Programming – A Guide for the Perplexed

 76

// all classes have a constructor, so this class

// has one even though it has not been coded for

class Animal {}

// this declaration provides an empty constructor

class Animal

{

 Animal()

 {

 // initialisation code here!

 }

}

The code below illustrates that an object is very

specific about how it can be used. An object is defined

by its class and anything not defined there will lead

to an error:

// ERROR!!! No field 'Car' defined in class

animal.Car = "Ferrari";

The following code provides an example of

how inheritance works. It shows how classes can

re-use what is defined in their parent. Here, the Name

field defined in Animal is re-used:

mammal.Name = "Goat"; // Name << Animal

cat.Name = "Felix"; // Name << Mammal << Animal

A more difficult concept to understand is

polymorphism. To help here, first consider that

nature has produced no less than three sets of flying

creatures: birds, insects and bats. Classes can

express this fact via polymorphism:

Computer Programming – A Guide for the Perplexed

 77

class FlyingAnimal: Animal

{

 // to be overridden a method

 // must be marked as virtual

 virtual void Fly() {}

}

class Bird: FlyingAnimal

{

 override void Fly() {} // polymorphic 'Fly'

}

class Insect: FlyingAnimal

{

 override void Fly() {} // polymorphic 'Fly'

}

class Bat: FlyingAnimal

{

 override void Fly() {} // polymorphic 'Fly'

}

We create a FlyingAnimal class that defines code for

flying. We then create classes for the three types of

flying animal and we override the parent class

flying code. Each child class implements its own

‘flying code’, just as nature intended.

8.2 OOP Methods
A programming language can be said to consist

of things (variables, constants, objects) and actors.

Computer Programming – A Guide for the Perplexed

 78

In OOP, methods are the actors (not to be confused

with method actors). Methods belong to objects and

are defined in classes.

Compare C# to C, which does not have objects. In C,

actors are called ‘functions’. A function can be

thought of as a ‘free’ actor. In C# a method is an actor

‘tied’ to an object:

/*

 In C, all actors are 'free' because there are no objects

 to tie them to. Free actors are called FUNCTIONS.

*/

void login(char[] user, char[] pwd) {

 // implementation here

}

/*

 In C#, all actors are 'tied' to an OBJECT. Tied actors

 are called METHODS.

*/

// 'Login' is a METHOD of the 'user' OBJECT

user.Login("me", "password");

If we want the animals of our Animal object to be able

to start performing actions, we must give the class

some methods, which become members of the class.

class Animal

{

 string Name;

 void Sleep() {}

Computer Programming – A Guide for the Perplexed

 79

 void Watch() {}

}

class Predator: Animal

{

 void Eat(Prey prey) {}

}

class Prey: Animal

{

 bool Escape() { return true; }

}

// usage

// here we create two OBJECTS from the

// CLASS definitions above

Prey fly = new(); // shortcut for 'new Prey()'

Predator spider = new();

// call the METHODS (actors) of the 'Prey'

// and 'Predator' classes

// note: 'call' is the most commonly-used terminology

// for using methods, so we say we 'call'

// Escape(), we 'call' Eat()

if (!fly.Escape()) // nb 'dot notation'

{

 spider.Eat(fly); // nb 'dot notation'

}

Computer Programming – A Guide for the Perplexed

 80

Let us pick apart these three lines to understand

more about how methods work:

void Eat() {}

bool Escape() { return true; }

if (!fly.Escape())

The first line contains the curious term void. This

implies to the unenlightened that there is something

up. In fact, the term is an old C one that simply

means ‘nothing’ or more specifically ‘has no value’.

The line void Eat() {} contains three elements.

• The curly braces we are familiar with, so we

know that they form the block of the

method’s code (here empty).

• Eat() is the name of the method and the

parentheses (here empty) show that it is a

method. In between the parentheses is where

we put any parameters.

• void is the return value of the method. That

is the point of void (‘has no value’). void allows

a method to act without responding.

What all this means will become clearer by

examining the line bool Escape() { return true; }.

• Escape() is as per Eat(). There are no

parameters here either.

• void has been replaced by bool. This is a value.

It means that Escape() is expected to respond.

Computer Programming – A Guide for the Perplexed

 81

In C (and C#) terminology this is

called returning a value. This makes the

method act like a sort of variable. So just as

we have can have a bool test variable, we can

also have a bool Test() method. The method

though is what we might term an active

value, whereas a variable is effectively

a passive value. The Escape() method, far

kinder than Nature, responds here with the

line return true.

• In the line if (!fly.Escape()), the exclamation

mark is the C# boolean symbol for ‘not’, as we

saw in the previous chapter. If its response

decides the fly can escape, it will return true,

which after applying the ! (‘not’) will evaluate

to false. If the fly can’t escape, the return

value will be false and the if will evaluate to

true. (Our code here is kind and the fly will

always escape.)

The last line to examine is void Eat(Prey prey) {},

which treads mostly familiar territory. The method

is void and not expected to respond, so it has no

return statement. The new thing here though is

the parameter, which is the poor prey. Fortunately,

this code too is kind, for the empty code block means

this predator can do nothing to its prey.

Methods, then, allow objects to act. The things of an

object are termed properties, which we need to

examine next.

Computer Programming – A Guide for the Perplexed

 82

8.3 OOP Properties
Our animals can keep a secret if we add the

following field to the class definition:

string Secret = "secret!";

But say your Animal class has been released into the

wild and coders are busy coding away with it. Given

this design of the class, a mischievous coder might

write:

animal.Secret = "Not any more!"; // goodbye, secret

That is not good. The class design has made the

secret public. There is no encapsulation. The

Secret property is simply thrown open to any code

using the Animal object. So rather than a field, it is

usually best practice to employ a property, for

properties enable encapsulation.

In the latest versions of C#, properties can be

defined in multiple ways:

// simplest type of declaration, more or less

// equivalent to a field . . .

public string Foo { get; set; }

// . . . except we can also have . . .

public string Foo { get; }

// . . . a read-only state field syntax cannot express.

Computer Programming – A Guide for the Perplexed

 83

// wordy property declaration (older syntax)

private string _foo;

public string Foo

{

 get { return _foo; }

 set { _foo= value; }

}

// concise property declaration (new syntax)

private string _foo;

public string Foo

{

 get => _foo;

 set => _foo= value;

}

The most important new thing here is the

keywords private and public that have so far been

avoided in the code examples. These are access

modifiers. They describe what can and cannot ‘see’

the value. A public value is accessible outside an

object but a private one is only accessible within the

class code. The secret can now be kept:

// DEFINITION

private string _secret = "secret!";

. . .

// USAGE

animal._secret = "Not any more!"; // ERROR! private

Computer Programming – A Guide for the Perplexed

 84

Now note the keywords get and set. These belong to

properties and are logically enough called

a getter and a setter. At this point, it should be

clear what the _foo variable is doing. It effectively

holds the actual value of the public-facing Foo

property. The getter simply returns the value of _foo

while the setter assigns the special variable value to

it.

This allows us to encapsulate our class because we

can now define which properties can be seen by

outside classes. If there is no setter, the property is

read-only.

private float _pi = 3.14;

public float Pi

{

 get { return _pi; }

}

. . .

numbers.Pi = 1.43; // ERROR! readonly! no setter!

float pi = numbers.Pi; // OK! getter exists!

Methods can also easily be encapsulated using

access modifiers:

private void GenerateSecret() {}

. . .

Computer Programming – A Guide for the Perplexed

 85

// secret stays secret here

myclass.GenerateSecret(); // ERROR! defined as private

Another important access modifier worth

mentioning here is protected. Look at this class:

public class Tale

{

 private string[] _characters;

}

public class FairyTale: Tale

{

 public void EnumerateCharacters()

 {

 // reference to '_characters': ERROR! private!

 for (int i = 0; i <= _characters.Length - 1; i++)

 {

 // ERROR! '_characters' is private!

 Console.WriteLine(_characters[i]);

 }

 }

}

Having just private and public access modifiers

clearly isn’t enough. A private variable or method is

inaccessible to descendant classes. That is the

purpose of the protected modifier. A protected item

is visible within the class hierarchy but not to

external code (as per private items). So, to fix the

code above we can make the following change:

Computer Programming – A Guide for the Perplexed

 86

// [Tale parent class]

// visible to all descendant classes

protected string[] _characters;

. . .

// [FairyTale descendant class]

Console.WriteLine(_characters[i]); // no error now!

I will finish this section with a simple example

illustrating the three key concepts of classes (and

objects): inheritance, encapsulation and

polymorphism.

public class Trickster

{

 // virtual: descendants can override

 public virtual void Deceive() {}

}

public class Spy: Trickster // inheritance !

{

 public override void Deceive() {} // polymorphism !

}

public class Magician: Trickster // inheritance !

{

 protected Device _wand;

 public Device Wand { get => _wand; } // encapsulation !

 public override void Deceive() {} // polymorphism !

}

Computer Programming – A Guide for the Perplexed

 87

8.4 to Lambdas
Now we are familiar with method members of an

object we can look at how C# expands the

capabilities of methods with a cluster of language

features: the delegate, the anonymous method

and the lambda.

First, let’s return to a very simple method:

int sum = numbers.Add(1, 1);

We can also write

numbers.Add = 1 + 1;

This achieves the same thing and neatly leads us to

delegates. We can create a delegate like this:

delegate int AddMethod(int: x, int: y);

This is a method without a body. It defines a method.

Any method having this form can act as a delegate

for it. It can be used somewhat like a field:

AddMethod Add = new AddMethod(/* see below */);

This line of code says ‘assign the memory reference

of the delegate we have just created to the ‘Add’ field

variable’. Delegates, we might say, turn methods

into variables.

Let us create a basic delegate example. Within the

body of the implied Numbers class used above, we can

use our delegate:

Computer Programming – A Guide for the Perplexed

 88

// create new property with our delegate type

AddMethod Add { get; set; }

// the AddDelegate is compatible with

// the AddMethod definition

int AddDelegate(int: x, int: y)

{

 return x + y;

}

// create a delegate and assign it to the Numbers class

numbers.Add = new AddMethod(AddDelegate);

// call the delegate

numbers.Add(1, 1); // points to AddDelegate

This is all quite different to a non-delegated method.

The code is the same in this simple example, but an

ordinary method is static and the code in the class is

fixed. The delegate method is coded-for outside of the

class.

If you need your class to take care of the code, you don’t

want a delegate and this is generally the case, I’d say always

for the core code of any class. But delegates offer the

possibility of a good deal of flexibility if needed.

Delegation is made far easier with anonymous

methods. These are effectively ad hoc delegates

that do not need to be declared:

Computer Programming – A Guide for the Perplexed

 89

numbers.Add = new delegate(int: x, int: y) // no name!!

{

 return x + y;

}

numbers.Add(1, 1); // use the anonymous delegate

Lambdas are similar but still more concise:

numbers.Add = (int: x, int: y) return x + y; // a lambda

numbers.Add(1, 1); // use the lambda

The details of lambdas and their usage are outside

the scope of a guide to what code is. But, since their

introduction into C#, they are one of the key features

of the language.

8.5 Generics
Songs like ‘Strawberry Fields Forever’ or ‘Like A

Rolling Stone’ are unique. A lot of music though —

say Merseybeat or K-Pop or Disco — tends to sound

generic. The Mills & Boon publishing company

deliberately publishes generic books that ensure its

readers make a safe purchase every time.

Sometimes the unique is good, but generic is also

often the best option. If you want the Mona Lisa

hanging in your living room, a generic reprint is your

only option.

We have already met with arrays that can store a

list of things. In modern programming

environments, a list class is much easier to handle

than the old array, for it can iterate through its

Computer Programming – A Guide for the Perplexed

 90

member via a foreach loop without needing an

indexer:

// old style array: 'for'

for (int i = 0; i <= myarray.Length -1; i++)

{

 /* do something with */ myarray[i];

}

// ArrayList: 'foreach'

// (this is an old pre-generics .NET Framework class)

foreach (int i in myarray)

{

 /* do something with */ i;

}

/*

 // NOTE!

 // arrays in the latest .NET releases *do*

 // allow iteration!

 array[] a // fill

 foreach (int i in a) {}

*/

The ArrayList class was an improvement, but its

initialisation shows that the pre-generics world was

not ideal:

ArrayList names = new ArrayList();

names.Add("Truman");

names.Add("Eisenhower");

names.Add("Kennedy");

Computer Programming – A Guide for the Perplexed

 91

// etc

ArrayList numbers = new ArrayList();

numbers.Add(1);

numbers.Add(2);

numbers.Add(3);

// etc

This code works because the ArrayList is being filled

with a collection of object variables and everything

in C#, as we have seen, inherits from object. This is

error-prone because there is no built-in way of

checking the type of an ArrayList member.

Enter generics. Here is the equivalent generic code:

List<string> names = []; // [], minimal list declaration

names.Add("Truman");

// . . .

List<int> numbers = [];

numbers.Add(1);

// . . .

This might not look much at first, or seem much

different to the ArrayList version. The big deal lies

within the angular brackets, for this is the generic

stuff.

Notice the <string> attached to the first list

and <int> to the second. Here is the definition of a

generic list:

Computer Programming – A Guide for the Perplexed

 92

public class List<T>: ICollection<T>

T here stands for ‘Type’. Translated further, it means

‘of any type’. That is, T can be replaced by the name

of a type such as string or int. You can write your

own class and use it with the list: List<MyClass>.

What about the ICollection<T> to the right? We have

seen that classes inherit and that to express this we

write Mammal: Animal. The I in front of Collection tells

us this is an interface. If the item to right is an

interface (not a class) the class being defined

must implement the interface. Note that the

interface like the class has those angular brackets

enclosing a T. ‘ICollection’ is thus a generic

interface. Note too how the <T> is a match for the

class declaration.

But what is an interface?

8.6 Interfaces
In C# an interface can be thought of as a codeless

class-like definition for a single task (for example

iterating or sorting).

Note that the latest iteration of C# has for good or ill added

the ability to add code to an interface definition, a fact we

will conveniently ignore here.

Just as a class defines the form of an object, an

interface defines what is effectively a class fragment.

Any class that implements any

interface must implement all of the interface. This

Computer Programming – A Guide for the Perplexed

 93

means that, however large and complex the

implementing classes are, they can all be reduced to

the members defined in the interface and in this

respect are therefore identical.

An interface definition is shown below:

// create an interface; the 'I' prefix is not enforced

// by the language, but is in universal use

public interface IPlay

{

 void Play();

}

It is a typical interface in its minimalism. Interfaces

ought to be focussed. Below is its implementation:

// implementation 1

public class FootballMatch: IPlay // ':' means 'implements'

{

 // play a game of football

 public void Play() {} // MUST have a Play() method!

}

// implementation 2

public class Child: IPlay

{

 // childsplay

 public void Play() {} // MUST have a Play() method!

}

Computer Programming – A Guide for the Perplexed

 94

// implementation 3

public class Stereo: IPlay

{

 // play a tune

 public void Play() {} // MUST have a Play() method!

}

// create a 'consumer class' for the interface

// all classes implementing IPlay look identical

// so any implementation of the IPlay interface

// is ok here

/*

 Note: 'Player' has a 'primary constructor' (ctor). The

 parameter is passed in at the very top of the class

 definition, so we do not need to create a default

 ctor within the class body.

*/

public class Player(IPlay item) // primary ctor

{

 // 'item' passed in via ctor

 private IPlay _item = item;

 public void Play()

 {

 // play football or childsplay or play music

 _item.Play();

 }

}

Computer Programming – A Guide for the Perplexed

 95

// run the player with each IPlay implementation

Player player = new(new FootballMatch());

player.Play(); // nil-nil draw

// note this replaces the old player

player = new(new Child());

player.Play(); // lot of mess

player = new(new Stereo());

player.Play(); // tuneless warblings

Here an IPlay interface is declared and implemented

by three classes. A consumer class Player is created

that can run any IPlay object. This means

that player.Play() will perform very different actions

depending on whether it is a match or a child or a

stereo doing the playing. The only thing it knows is

that something is playing.

An important point to emphasise is that an interface

has absolute tunnel vision. As stated above, no

matter how many properties and methods the Stereo

class actually defines, as an implementer of IPlay

and as an instance of IPlay it has only the single Play

method. So,

• a class may have many methods;

• an interface at most a few;

• a class masquerading as an interface has

these few only

Computer Programming – A Guide for the Perplexed

 96

A well-thought-out interface is worth its weight

in IGold. The corollary being that a bad interface is

certifiably ILead.

public interface IWhy

{

 void LeafThrough(Book book);

 void Move(int amountX, int amountY);

 void Tidy(Room room);

 object Search(string text);

 void Wait();

 bool IsPerpendicular { get; }

}

I mean, why?

8.7 Components
With components we are going up a notch in the

hierarchy of complexity:

string > array > object (class) > component

A component is easiest to understand if we consider

user interfaces. UI is buttons and tab panels and

check boxes and text boxes etc. To build a UI, we add

these to our interface, whether Web or Windows. In

fact, a text box is an example of a component. What

is a text box? A rectangular region that both displays

text and allows text to be entered. The point about a

text box is twofold. First, a text box is a text box is a

text box. It is a component. It is entirely predictable.

Every text box is exactly the same. However, a text

box has properties. These properties can be set.

Computer Programming – A Guide for the Perplexed

 97

Background colour for example. So, to revise our

bold statement, ‘Every text box has exactly the same

properties’. It is the same but it may not look or act

the same, which is of course what makes it useful.

That is a component. The text box itself is a built-in

component. But you the programmer can create a

component too. What about a Quacker? A Quacker has

a button that when pressed emits a quacking sound.

It also has an image of a duck. The two basic

properties of a Quacker component are therefore the

image and the quack. What more does a quacker

need?

The Quacker is a custom component. Once you have

written such a component, other applications can

use it and add it to their UI.

A component is, therefore, a runnable piece code

designed for use in any .NET program. It is created

in one .NET project and consumed in other .NET

projects. The general principle being that a

component is universal. A component is available to

all of .NET.

8.8 Assemblies
The last thing to look at is the assembly, the end

result of all .NET projects. The assembly is the next

step up from the component.

The assembly is a synonym for ‘.NET program’, of

which there are two types. In Windows terms, an

Computer Programming – A Guide for the Perplexed

 98

.exe file is an executable. This means that it

entitled to start up a process, a running Windows

program. The other type is a DLL (‘Dynamic Link

Library’). A DLL is basically an executable that

cannot start a process. An exe is a primary program

that can execute, a DLL is a secondary program that

can execute inside an exe. The DLL is linked to the

exe and executes inside it.

The latest versions of .NET in fact greatly blur the difference

between EXE and DLL and always output an .exe file. But

the principle remains that an EXE runs itself and a DLL runs

inside.

The difference between a component and an

assembly is that a component is an emphatically

discrete thing. If Quacker is a component, a related

assembly might be Calls.dll and contain a set of

components (Quacker itself, of course, but also Woofer,

Meower, Brayer, Snorter, Bleater, Mooer, Rivetriveter

and many more).

Assemblies though are far too big to provide one-line

examples for, as are components. We have therefore

advanced as far as we can in our guide to ‘what is

code’. What is an assembly can only be explained in

general terms.

As we have gone as far as we can with C# and code

that does, we can now move onto the topic of data

and code that is done to.

Computer Programming – A Guide for the Perplexed

 99

9. Data
What is a program without data? and what is data?

It was noted at the beginning of this guide that

machine code is all command and data. With this

definition, data is almost everything in computing.

On the other hand, data can be merely ‘what is

stored in a database’. This first definition above is

too far-reaching to be useful here and the second far

too narrow.

To advance our enquiry, we can compare data to

memory. Without memory, we humans would move

from moment to moment entirely unable to

remember anything that had just happened. Just so

with a program. We run it, use it, shut it down, and

then what? What if even a simple text editor had no

memory? We would write a text, close the editor, lose

our work.

This gives us a key to a definition of data that we

can use here. We can agree that the document in

both the running program and the saved file is in a

sense the same document, but if we keep with the

analogy of data as memory, we observe it has two

states: active in a running program and static in a

stored file. Although we can speak of ‘data’ in either

state or indeed both, this chapter defines data purely

in its stored form. Data here is the memory that

persists after a program has been shut down.

Computer Programming – A Guide for the Perplexed

 100

The main purpose of this chapter is to explore

beyond ‘active’ programming languages like C# and

give a brief overview of the equally-important ‘static’

languages that deal with data, languages quite

unlike C#. First, as databases are most obviously

associated with data, we turn to SQL (‘Structured

Query Language’).

SQL is usually pronounced ‘sequel’ but ‘ess-cue-ell’ is also in

use and won’t raise eyebrows.

9.1 SQL
Alternatives to SQL do exist nowadays (NOSQL for

example, would you believe?), but for a long time

SQL ruled the database roost.

SQL has a mathematical basis in relational algebra

/ calculus. For this reason, a SQL database is often

called a relational database. To acquire a basic

understanding of SQL, you have to imagine a grid of

data. This grid is called a table. The grid consists

of columns and rows and is where data is stored.

Each item of data is contained in a row. It is the job

of SQL to fetch data from the grid by querying its

columns and rows.

Here a table definition in SQL:

Computer Programming – A Guide for the Perplexed

 101

CREATE TABLE Animal(

 /*

 A NULL column does not have to have a value,

 but a NOT NULL must have a value when a new

 row is inserted into the database.

 */

 Everyday_Name varchar(255) NOT NULL, -- =string

 Scientific_Name varchar(255) NOT NULL,

 Is_Predatory char(1) NOT NULL, -- =bool

 Number_Of_Legs int NOT NULL

)

GO -- run the SQL

This creates a table and its grid columns. The table

is like a class without any methods. There is

no active data in SQL and there are no methods.

There are no methods in SQL, but there are ‘stored

procedures’, which are functions that run SQL commands

on a SQL server.

The rows in the grid are the data and they are

retrieved by a SQL query:

-- the asterisk means 'all columns'

SELECT * FROM Animal

This will select all the rows in the Animal table. A

query can, however, select only particular rows and

columns:

SELECT Everyday_Name -- specify columns here

FROM Animal

WHERE Everyday_Name = 'Lion' -- specify rows here

Computer Programming – A Guide for the Perplexed

 102

This will select the column Everyday_Name and all the

rows from the Animal table where the row has the

exact value of ‘Lion’ for the Everyday_Name column.

This should of course be a single row here.

Now take another look at the table definition:

Everyday_Name varchar(255) NOT NULL,

Scientific_Name varchar(255) NOT NULL,

Is_Predatory char(1) NOT NULL,

Number_Of_Legs int NOT NULL

There are two issues here that usefully illustrate

what SQL is and does.

First, the NOT NULL declarations. These say that all of

the columns must have a value. This might be what

is wanted. It is difficult to see why any of these

should be left blank unless there was some data-

input error. However, this is only an option if you

have full control over the data. In many cases, a

database imports its data from an external source.

Here, making any but the Everyday_Name column NOT

NULL would be a very bad design because, with no

control over the data, there can be no guarantee

there will not be bad data. Only the key column, the

Everyday_Name, could be NOT NULL, for without the key

value a record is meaningless. However, even then it

might be better to allow bad data to be imported and

then fixed rather than refused entry into the

database.

The second issue lies with the key, the Everyday_Name

column. If there were two records with the same

Computer Programming – A Guide for the Perplexed

 103

name (for example ‘Bear’ was entered twice), the

database would effectively be corrupted. This can be

fixed:

Everyday_Name varchar(255) NOT NULL UNIQUE,

Scientific_Name varchar(255) NULL,

Is_Predatory char(1) NULL,

Number_Of_Legs int NULL

This would probably be acceptable here, as after all

animal names are unique. But if you were storing

data about your record collection, and your record

collection is very extensive, there would likely be a

problem:

-- Album_Title is not a good key!

Album_Title varchar(255) NOT NULL UNIQUE,

Artist_Name varchar(255) NOT NULL

You look through the thousand or so items in your

catalogue and notice you have ‘Greatest Hits’ by The

Chancellors and also ‘Greatest Hits’ by The Shaggs.

You simply cannot have a UNIQUE name here.

Here, primary keys come running to your rescue:

-- now we have a proper key!

Album_Id int NOT NULL PRIMARY KEY,

Album_Title varchar(255) NOT NULL,

Artist_Name varchar(255) NOT NULL

With a primary key in place, the database will

generate a sequence of numbers automatically each

time a new record is created. A primary key is

therefore guaranteed to be unique and the duplicate

Computer Programming – A Guide for the Perplexed

 104

album titles can now be added to your database

without any problems.

But there is still a problem with the Artist column.

As you have every Bob Dylan record ever released

and also a number of bootlegs, the value ‘Bob Dylan’

be duplicated in a great many database records.

Such duplication is not the relational database way

of doing things. Instead, to be relationally-correct

you must create a second Artist table with its own

primary key and then give the Album table a foreign

key.

-- 'Album' table

Album_Id int NOT NULL PRIMARY KEY,

Album_Title varchar(255) NOT NULL,

FOREIGN KEY (Artist_Id) REFERENCES Artist(Artist_Id)

-- 'Artist' table

Artist_Id int NOT NULL PRIMARY KEY,

Artist_Name varchar(255) NOT NULL

You can now fetch back data using a join in which

the Album and Artist tables are ‘joined’ via the

Artist_Id key.

SELECT alb.Album_Title, art.Artist_Name

FROM Album alb

INNER JOIN Artist art on alb.Artist_Id = art.Artist_Id

Now all your catalogue items are unique and there

is only one Bob Dylan. As it should be.

Computer Programming – A Guide for the Perplexed

 105

SQL quickly gets very complex, but it always works

within the simple concepts illustrated above, so I

think that is just enough to enable us to understand

what SQL is and does.

As far as deployment into ‘active’ languages such a

C# goes, a longstanding issue with databases has

been the disconnect between C# and SQL and how

to fetch SQL data into a program. There are now

sophisticated means of doing this but nevertheless,

SQL is not a lightweight option for storing data. The

database must be designed, configured and deployed

and of course a SQL server needs to be installed and

running. A database is a good choice for a large

program, but the smaller a program is the less this

is so and a text-file based form of storing data begins

to look a better bet.

9.2 XML
XML stands for ‘Extensible Markup Language’ and

it is, coincidentally, a markup language. What is a

markup language? Markup structures plain text. In

XML terms, markup is achieved

using elements and tags. An element consists of

a start tag and an end tag:

<!-- this is an element -->

<!-- <tag> is the opening tag -->

<!-- </tag> is the closing tag

<tag>DATA</tag>

Computer Programming – A Guide for the Perplexed

 106

A tag is enclosed within angular brackets. The name

of the tag sits within the brackets. In the closing tag,

the name is prefixed with a forward slash (/).

An XML equivalent of the SQL table we defined

earlier might look like this:

<animals>

 <animal>

 <everyday_name>Tiger</everyday_name>

 <scientific_name>Panthera tigris</scientific_name>

 <is_predatory>Y</is_predatory>

 <number_of_legs>4</number_of_legs>

 </animal>

 <!-- other animals follow -->

 <!-- equivalent to SQL rows -->

</animals>

XML is usually stored in a text file (though it can be

stored in a database). XML file data can be read by

an XML parser and most ‘active’ programming

languages have one of these. XML is very easy to

read in C#, for example.

It should be noted that there is a family of XML

technologies. XSLT (‘Extensible Stylesheet

Language Transformations’, if you will) transforms

one XML document structure into another XML

document structure. So,

<person>

 <name>Lord Lucan</name>

 <location>

Computer Programming – A Guide for the Perplexed

 107

 <place>Missing</place>

 </location>

<person>

might be transformed to the conciser:

<person name="Lord Lucan" whereabouts="Missing" />

<!--

 The values in the quotes are known as ATTRIBUTES.

 A lot of XML data can be stored as either tag

 content or in an attribute. It is a fine art

 to decide which is better. In this case, where

 concision is clearly a priority and the data

 is always going to be a short bit of text,

 attributes appear to be good to go.

-->

Another important member of the family is XQuery

(featuring in the star role XPath). This allows you to

‘query’ (as per SQL) an XML document.

However, the basic fact is that ‘active’ languages like

C# pretty much exclusively interact with XML itself

(though their parsing technologies are likely to use

XPath).

To conclude, then, as a simple text file XML is far

easier to deploy than a SQL database and its data is

easier to read into a program. However, it is clearly

less suited for larger datasets.

Computer Programming – A Guide for the Perplexed

 108

9.3 JSON
JSON (‘JavaScript Object Notation’) is a subset of

JavaScript, a C-like language that is used

ubiquitously for web development. JSON is,

basically, the data bits of JavaScript and a JSON file

can be thought of one large flub of declarations.

Our data would look like this in JSON:

{

 "animal": {

 "everydayName": "Tiger", // a string value

 "scientificName": "Panthera tigris",

 "isPredatory": true, // a boolean value

 "numberOfLegs": 4 // an integer value

 }

}

/*

// for comparison purposes, here is the JSON

// written in 'proper' JavaScript

const animal = {

 "everydayName": "Tiger",

 "scientificName": "Panthera tigris",

 "isPredatory": true,

 "numberOfLegs": 4

 };

*/

JSON can be read into any programming language

as serialised data. To achieve this in C#, you would

Computer Programming – A Guide for the Perplexed

 109

create a class that matches the JSON data values,

the target for the serialisation:

// C# class to match the JSON data

public class Animal

{

 public string everydayName { get; set; }

 public string scientificName{ get; set; }

 public bool isPredatory{ get; set; }

 public int numberOfLegs{ get; set; }

}

The JSON data can now be deserialised into the

C# class. Assuming a JSON file containing a list

(array) of animals, the code to deserialise is simple:

// the reader method reads the text file

// of JSON data

string jsonAnimalsData =

 MyAnimalsReader.ReadJson(jsonFilePath);

// the JSON data is fed into the deserialiser,

// which converts each item into an object of

// the Animal class and adds it to a Generic

// list of Animal objects

List<Animal> animals =

 JsonSerializer.Deserialize(jsonAnimalsData,

 typeof(List<Animal>)) as List<Animal>;

/*

 NOTES.

 1

 ‘typeof()’. This is a special C# operator that

 takes in an object and returns its type. C#

Computer Programming – A Guide for the Perplexed

 110

 has a class called Type that expresses type

 information for an object and the Deserialize

 method expects an object of class Type as

 the second parameter.

 2

 ‘as’. Classes can be 'cast' with the 'as'

 operator. The ‘Deserialize’ method has a

 return type of 'object', which means it can

 return any class type. The return value

 therefore needs to be converted (which

 is what 'cast' means) into the type we

 want. The deserialiser, note, will create

 a list of animals. We must cast to this

 type or an error will be thrown.

*/

As for serialisation and deserialisation, this refers to

the process of creating an object from its class

definition (serialisation) or a class definition from

the object (deserialisation). So long as language A

(here JSON) and language B (here C#) have

identical class definitions, an object can be passed

from one language to the other.

JSON makes it programmatically very easy to store

and read data stored in an object. The downside is

that it is less easy for humans to read than XML.

Computer Programming – A Guide for the Perplexed

 111

9.4 YAML
Another way of storing data is YAML (‘Yet Another

Markup Language’). Our data looks like this in

YAML:

animal:

 - everydayName: Tiger

 - scientificName: Panthera tigris

 - isPredatory: Y

 - numberOfLegs: 4

YAML was intended as an easy-to-read format, but

nowadays has a bad reputation for a complexity,

making it highly error-prone and hard to maintain.

However, if the YAML is kept simple it does I think

keep its original promise. The YAML is easier to

read and write than the JSON, less verbose than the

XML and far simpler to deploy than a SQL database.

As with JSON, YAML can easily be serialised and

deserialised in C#.

9.5 HTMLF
There are edge cases where the best option might be

to roll your own data format. Here is a case study

from my personal website.

The site contains a set of overview texts that

summarise their page content. To make maintaining

the overview content easier, the text is stored in an

external file that needs above all to be easily

Computer Programming – A Guide for the Perplexed

 112

editable. Evaluating the existing options, XML is

simultaneously overkill and fiddly to work with,

JSON is not designed for editing data and YAML is

quite unsuitable because yamelised stored HTML

needs to be carefully indented making editing

difficult. So, the HTMLF (HTML Fragment) format

was born:

@begin/

Tiger

<p>Panthera tigris</p>

/end@

@begin/

Tortoise

<p>Testudinidae</p>

/end@

HTMLF simply stores markup fragments and their

identifiers between @begin/ and /end@ markers. It is

an example of a data format that is little, limited and

local and it is easy to parse and use:

HtmlFragments fragments = new(htmlfPathString);

HtmlFragment fragment = fragments.Find("Tiger");

string tigerFragment = fragment.Html;

Summary
All computing and every computer program is a mix

and match of action and data. Data can be defined in

many ways. One way is to distinguish between

its active state (when it is in a running program) and

its passive state (when it is stored after the program

is shut down). Without this world-outside-the-

Computer Programming – A Guide for the Perplexed

 113

program, computers would have no conceivable use.

Stored data is the long-term memory of a program

and thus all programming is much-concerned with

stored data.

Outside of C# and comparable ‘active’ languages,

languages that deal with data — SQL, XML, JSON,

YAML, dare I say HTMLF, etc — are equally part of

any programmer’s remit.

In a nutshell, coding is as much

about loading and storing data (in XML, say)

as running data (in C#, say).

Computer Programming – A Guide for the Perplexed

 114

10. Web
The World Wide Web entered the world it is named

after in the year 1993, though internal development

(within particle-colliding CERN) began back in

1989. As this momentous event happened over three

decades ago, it seems not quite right to call it a

revolution. No revolution lasts that long. Perhaps we

can better think of it as an ‘evolving revolution’, its

basic principles leading to a continuous sequence of

revolutionary changes.

Whatever, no one would deny that the www has

revolutionised not only computing but its namesake

the world.

In computing terms, the www has changed the very

nature of computing so that as web sites become

more like programs, a program runs less and

less for a computer but in a computer: for web sites

run in a web browser that runs on a computer. A

web site can be viewed on a PC, a tablet, a phone, a

watch or a TV. Same site, different worlds. In the

Overton Window of computing, this is perhaps

nowadays the worlds wide web.

So what, we ask, were the origins of the www

revolution?

Computer Programming – A Guide for the Perplexed

 115

10.1 Protocol + Language + Reader
There was an internet before the www. The TTY

teletype was an interactive system, but much of the

early internet was focused on files. Files could be

exchanged via FTP (‘File Transfer Protocol’),

communications could be exchanged via electronic-

mail (in which files were sent to the specified email

address) and in message boards, where messages (in

other words, files) were sent to a message board

server and read by message board members.

This was the environs in which our revolution took

place, and the revolution revolved around

a language (HTML, ‘Hypertext Markup

Language’), a protocol (HTTP, ‘Hypertext Transfer

Protocol’) and a reader (the browser). Underlying

all these was hypertext.

Hypertext is built upon the brilliant insight that

computer text is potentially more flexible than

everyday text in a book or a newspaper. Computer

text can link to other texts and thereby build up an

information network. The problem before HTML lay

in building up such a network. Hypertext software

ran on a computer and the information network had

to be contained within the hypertext program. This

ensured that the network was always limited.

So to HTML and markup. We have already met with

the markup language XML. This is derived from

SGML (‘Standard Generalized Markup Language’),

a markup language used to generate other markup

Computer Programming – A Guide for the Perplexed

 116

languages. HTML (like XML) was generated from

SGML.

HTML had two main features. First, it contained

markup elements with which to create and format

fairly sophisticated documents. Second, there was

the anchor and its href (‘hypertext reference’),

which is where we find the hypertext.

Here is a simple fragment of ‘early-HTML’:

<!--

 The 'table' is a flexible way to structure content.

-->

<table>

 <tr> <!-- table row -->

 <td> <!-- table data (ie table column) -->

 <!-- specify the look and feel of the text -->

 <!-- paragraph of text -->

 <p>Interesting fact:</p>

 </td>

 <td> <!-- second column in this table -->

 <!-- hypertext anchor with 'reference' (href) -->

 <!-- 'reference' (hyperlink) text -->

 Hypertext!

 </td>

 </tr>

</table>

Computer Programming – A Guide for the Perplexed

 117

The second plank of the web was HTTP. This was

how .htm pages were delivered from the server to

the client.

The third plank was the reader program for the

markup code. This is now universally known as a

browser.

The job of the browser was to read the HTML

markup and display the page according to the

markup layout and styling instructions. HTML

allowed quite sophisticated layouts that were

indistinguishable from a basic word-processed

document. Above all, of course, the browser handled

the hyperlinks within a page’s anchor tags. When

the user clicked a link, the browser sent an HTTP

request to the specified web address and the server

duly responded with the requested page. This was

read, parsed, dispatched and finally displayed in the

browser, replacing the page that requested it.

It took a little while for the web to catch on because

at first it suffered from the same restriction as the

earlier hypertext programs, a limited information

network. But whereas the limitation of the

old programs was fixed, the web could expand

indefinitely.

One phenomenon that quickly grew out of the web

was the site. Over at ‘www.interesting.org’ and its

facsimiles, it became apparent the hyperlinks could

not only connect remote computers but also files on

the local server. A traditional web site is in essence

Computer Programming – A Guide for the Perplexed

 118

a set of linked files on a local server. Sites

themselves could become informational networks

devoted to specialist information. The informational

network of the web as a whole grew exponentially in

a short space of time, so much so that the www

became known simply as ‘The Internet’.

10.2 Client Revolutions
There was room for improvement, however, and so

began the relentless sequences of ‘evolutionary

revolution’ that has characterised The Internet ever

since the www began.

First, it quickly became apparent that the tag

was a mistake. Ideal for an individual web page or

the small sites of the early web, it lead to a

maintenance nightmare for larger sites. Changing

the style of the site, or keeping styles consistent,

were needlessly hard tasks.

The giants therefore invented Cascading Style

Sheets (CSS). The revolution here was that styling a

document was now essentially external to the

documents (though styles could still be embedded if

preferred).

With CSS, styling text became easy to do and the site

was far more maintainable:

p {

 color: lime;

}

Computer Programming – A Guide for the Perplexed

 119

Including this stylesheet in an HTML page would

style every <p>aragraph. But as that is somewhat

inflexible, stylesheets also have what are called (as

per OOP) classes:

.lime-colour {

 color: lime;

}

. . .

<p class="lime-colour">Yuck!</p>

You can also style individual tags by applying a style

to an HTML id (id’s must be unique to a page):

#yuck {

 color: lime;

}

. . .

<p id="yuck">Yuck!</p>

You can even embed styles directly into a tag:

<p style="color: lime;">Yuck!</p>

The giants also introduced a second revolution with

the ability to script web pages. Scripting was

discussed in chapter two, so suffice it to say here that

JavaScript activates web pages. The structure of the

HTML is analysed into a DOM (‘Document Object

Model’) and scripts operate on this DOM. Nodes can

be added to and removed from the DOM using

Computer Programming – A Guide for the Perplexed

 120

scripts, which can also modify any existing node.

There is also a BOM (‘Browser Object Model’) that

allows scripts to interact with the browser itself.

Another significant innovation was Ajax

(‘Asynchronous JavaScript and XML’). This allowed

scripts to download data from the web server. The

reason this is a big deal is because it made server

communication granular or perhaps even modular.

Before Ajax, the browser requested web pages and

the context of the web was therefore the page itself.

With Ajax, the page could now fetch data for any

part of the page from the server without reloading

the page.

Pages could now be modified via either the client (by

using script working purely within the browser

itself) or the server (by making an Ajax call). This is

illustrated in the code below:

<p id="placeholder">Placeholder Text</p>

. . .

<script>

 // this code searches for the above tag in the DOM

 // using its unique id (id's are marked with a hashtag)

 const placeholder =

 document.querySelector('#placeholder');

Computer Programming – A Guide for the Perplexed

 121

 // CLIENT-BASED mod (code runs on client)

 // getReplacementText: local js code

 placeholder.innerHTML = getReplacementText();

 // SERVER-BASED mod (code calls server via Ajax)

 placeholder.innerHTML = getReplacementTextFromAjax();

</script>

10.3 Server Revolutions
With Ajax, we arrive at the server. In chapter two

we described the revolution introduced by

the gateway on the server. This was the early term

during the days of the CGI (‘Common Gateway

Interface’) and a scripting language called Perl. The

term ‘gateway’ is I think still useful as a metaphor,

but is rarely used today when it is enough to refer to

the ‘server’ or ‘server-side’.

Microsoft’s earliest attempt to control the server was

ASP (‘Active Server Pages’, an archaic name dating

from the time when the company was excited about

the COM term ‘Active’, tying in as it did with the

then-new ‘ActiveX’ technology). ASP was closely tied

to Visual Basic. In ASP you would write code like

this:

<p id="placeholder">

 <%

 Response.Write 'Replaced!'

 %>

</p>

Computer Programming – A Guide for the Perplexed

 122

This code runs on the server. The page delivered to

the client and viewed in the browser would look

something like this:

<p id="placeholder">

 Replaced!

</p>

Long-superseded by ASP.NET, in its time ASP

marked a significant advance in server-side

programming, for unlike the CGI and Perl dynamic

duo, ASP was a unified environment, for example

tying in with Microsoft’s ADO (‘ActiveX Data

Objects’, that ‘active’ again) tech that allowed ASP

pages to easily connect to databases.

In today’s world, we have reached the stage of .NET

Core and ASP.NET MVC (‘Model View Controller’)

or API (‘Application Programming Interface’) REST

(wait for it, ‘Representational State Transfer’) sites.

Hold on, I’ll repeat that bit without the meaningless

‘keys’ to the TLA’s.

In today’s world, we have reached the stage of .NET

Core and ASP.NET MVC or API REST sites.

Because Core code is compiled from IL into the

machine code of the host operating system,

ASP.NET sites are no longer tied to Windows.

Moreover, there is now a lightweight Core web

server called Kestrel which can also be executed on

the host OS. Kestrel runs in the host’s main web

server and because Core sites work directly with

Kestrel, not the main web server, they will work

Computer Programming – A Guide for the Perplexed

 123

with any system Kestrel can. (Before Core and

Kestrel, ASP.NET sites ran only on Windows

machines and were mostly deployed to Microsoft’s

main web server software, Internet Information

Server.)

A .NET site can also choose the technology to power

the site. MVC and API (REST) have been mentioned,

but there is also React.js (a Facebook language that

reimagines JavaScript in components), which in

turn is often tied to TypeScript (a Microsoft

language that reimagines JavaScript into a less wild

coding habitus). What a web application is and does

is becoming less clearly-defined. API sites do not

necessarily have anything to do with either

hypertext or HTML — they return data, often in

JSON format, but also more sophisticated

technologies such as GraphQL (another Facebook

language).

MVC creates traditional HTML web sites but even

so reimagines their creation. With MVC the actual

HTML is now called the View. The Model is a C#

class holding the data displayed in the view.

The Controller handles requests for pages (that is,

views) and is responsible for sending the right page

back to the client (that is, the browser).

Here is an example of a controller:

Computer Programming – A Guide for the Perplexed

 124

public class MontyPythonController: Controller

{

 [Route("[controller]/[action]")]

 public IActionResult MontyPython()

 {

 MontyPythonModel model = new();

 model.Message = "spam spam spam spam spam";

 return View(model);

 }

}

The view in this example is called MontyPython and

illustrates the MVC naming convention. The

controller is called MontyPythonController and the

model MontyPythonModel. The view will be named

MontyPython.cshtml (‘C# html’).

When a request for the Python page reaches the web

server, it will be routed to the controller. This will

create the model and pass it to the view, which is

another server-side file that mixes client-side code

(HTML, CSS, JavaScript) with server-side C#.

Microsoft calls this hybrid technology Razor. It is

Razor files that are given that ‘cshtml’ extension.

The MontyPython.cshtml page/view might look

something like this:

Computer Programming – A Guide for the Perplexed

 125

@model MontyPythonModel

@{

 // ‘@’ denotes Razor code and @{} a Razor block

 <p>@Model.Message</p>

}

As you can see, the model has been passed to the

view, which outputs the ‘spam’ message. Using this

web application, any number of Python quotes could

be sent to the view and the site could easily be

expanded to include a FawltyTowers view, though

please no not a Yellowbeard view.

The MVC architecture blurs, from the programmer’s

point of view, the distinction between server and

client:

<script>

 var x = 1; // JavaScript code

 @{

 var y = 1; // Razor code

 }

 // ERROR! y here is an undeclared script variable!

 x = y;

 x = @y;

 // OK, but @y is only assigned on the server;

 // on the client, this is equivalent to x = 1

 // which may be what is intended but - the statement

 // looks like a variable assignment (x = y) and

 // client-side it is *not* a variable assignment

</script>

Computer Programming – A Guide for the Perplexed

 126

The gateway is still there in fact but is now almost

invisible in code.

Another curious side-effect of this apparent

hybridity is the appearance of the illusorily concise

code:

@{

 foreach(var stuff in @Model.Stuffs)

 {

 Html.Raw(@stuff.Html);

 }

}

This server code looks concise, but what is in that

Html property? If the HTML is wordy and there are

100 or say 1,000 items — well if you go to ‘View page

source’ (Chrome, or the equivalent in your favoured

browser) you will get an unpleasant surprise.

Finally, a word or two about API/REST sites. REST

is built around HTTP requests. There is a small set

of these and here we will concentrate on the two

most common: GET and POST. REST ingeniously turns

these into data-centric functions, effectively ‘read’

and ‘write’. HTTP requests typically send HTML

documents, but if we see what is sent as mere data,

we can just as easily pass JSON around. A typical

API, then, reads and writes JSON over HTTP.

In .NET Core, there is a good deal of similarity

between MVC and API. Both are built around

Computer Programming – A Guide for the Perplexed

 127

routing. In MVC, stuff is routed to views and in API

to the API itself.

As a very simple example of an API that ‘writes’

JSON data via a GET request, this code sets up the

routing for the API method:

app.MapGet("/animals", [HttpGet] () =>

 MyApiController.GetAnimals());

The code behind the GET would be something like

this:

public static List<Animal> GetAnimals()

{

 string json = "";

 string path = "c:\json\animals.json"

 using (StreamReader reader = new(path, Encoding.UTF8))

 {

 while (reader.Peek() > -1)

 {

 json += reader.ReadLine() + Environment.NewLine;

 }

 }

 List<Animal>? animals = JsonSerializer.Deserialize(

 json, typeof(List<Animal>)) as List<Animal>;

 return animals ?? [];

}

(I leave it as an exercise for the reader to decode the

code.)

Finally, a client program can retrieve the data from

the excellent site specified in the map:

Computer Programming – A Guide for the Perplexed

 128

https://www.imaginary.com/animals

10.4 Distributed / Cloud
Moving from the apparent merging of client and

server, it is appropriate to finish with a brief note on

distributed computing and the cloud.

A client/server relationship is traditionally between

computer and computer. One computer is the client

and the other is the server. In distributed

computing, many machines are involved. How many

may vary, but by definition it is ‘many’.

The latest web trend is programming for this

distribution. Let us take for example a process

distributed over three machines. X machine, Y

machine, Z machine. Let us say that a key piece of

data is the Turtle class (it is after all turtles, all the

way down). There is a turtle called Bertha and the

Turtle class stores all the information about Bertha.

Should machines X, Y and Z share information about

her? One influential view responds with an

emphatic ‘No!’. This might lead to a loss of data, or

perhaps worse corrupted data. Each machine needs

to be separate from each of the others and in that

way preserve the integrity of its data. Even if one or

even two machines fails, the surviving information

about Bertha on the third machine will have

retained its integrity.

This loose and unlocalised distribution of data seems

to be where at least a great part of computing is

Computer Programming – A Guide for the Perplexed

 129

heading, a nebulous mass of machines anchoring

The Internet. No one machine can afford to be an

independent voice, it must be part of a larger choir.

Data must retain its integrity, but it must do so

inside the choir. Even to set x to 1 is a hard problem,

for the simplest of data still needs data integrity.

A cloud, meanwhile, is precisely a nebulous mass of

machines. Nebulous means ‘cloudy’. Data in the

cloud is lost in the cloud. Programming is

programming for the cloud. Programs run on any

machine in the cloud.

What is programming? In the cloud, where the

program itself leaps from machine to machine,

perhaps this is the beginning of a new answer to the

question of what is programming and the beginning

of a new computing.

At this new beginning, then — we end.

